2019-07-25

转载:https://www.jianshu.com/p/ae25eb3cfb5d

Java:CAS(乐观锁)

本文讲解CAS机制,主要是因为最近准备面试题,发现这个问题在面试中出现的频率非常的高,因此把自己学习过程中的一些理解记录下来,希望能对大家也有帮助。

什么是悲观锁、乐观锁?在java语言里,总有一些名词看语义跟本不明白是啥玩意儿,也就总有部分面试官拿着这样的词来忽悠面试者,以此来找优越感,其实理解清楚了,这些词也就唬不住人了。

  • synchronized是悲观锁,这种线程一旦得到锁,其他需要锁的线程就挂起的情况就是悲观锁。
  • CAS操作的就是乐观锁,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。

在进入正题之前,我们先理解下下面的代码:

 private static int count = 0;

    public static void main(String[] args) {
        for (int i = 0; i < 2; i++) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                    } catch (Exception e) {
                        e.printStackTrace();
                    }
                    //每个线程让count自增100次
                    for (int i = 0; i < 100; i++) {
                        count++;
                    }
                }
            }).start();
        }

        try{
            Thread.sleep(2000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println(count);
    }

请问cout的输出值是否为200?答案是否定的,因为这个程序是线程不安全的,所以造成的结果count值可能小于200;

那么如何改造成线程安全的呢,其实我们可以使用上Synchronized同步锁,我们只需要在count++的位置添加同步锁,代码如下:

private static int count = 0;

    public static void main(String[] args) {
        for (int i = 0; i < 2; i++) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                    } catch (Exception e) {
                        e.printStackTrace();
                    }
                    //每个线程让count自增100次
                    for (int i = 0; i < 100; i++) {
                        synchronized (ThreadCas.class){
                            count++;
                        }
                    }
                }
            }).start();
        }

        try{
            Thread.sleep(2000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println(count);
    }

加了同步锁之后,count自增的操作变成了原子性操作,所以最终的输出一定是count=200,代码实现了线程安全。

但是Synchronized虽然确保了线程的安全,但是在性能上却不是最优的,Synchronized关键字会让没有得到锁资源的线程进入BLOCKED状态,而后在争夺到锁资源后恢复为RUNNABLE状态,这个过程中涉及到操作系统用户模式和内核模式的转换,代价比较高。

尽管Java1.6为Synchronized做了优化,增加了从偏向锁到轻量级锁再到重量级锁的过度,但是在最终转变为重量级锁之后,性能仍然较低。

所谓原子操作类,指的是java.util.concurrent.atomic包下,一系列以Atomic开头的包装类。例如AtomicBooleanAtomicIntegerAtomicLong。它们分别用于BooleanIntegerLong类型的原子性操作。


    private static AtomicInteger count = new AtomicInteger(0);

    public static void main(String[] args) {
        for (int i = 0; i < 2; i++) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    try {
                        Thread.sleep(10);
                    } catch (Exception e) {
                        e.printStackTrace();
                    }
                    //每个线程让count自增100次
                    for (int i = 0; i < 100; i++) {
                        count.incrementAndGet();
                    }
                }
            }).start();
        }

        try{
            Thread.sleep(2000);
        }catch (Exception e){
            e.printStackTrace();
        }
        System.out.println(count);
    }

使用AtomicInteger之后,最终的输出结果同样可以保证是200。并且在某些情况下,代码的性能会比Synchronized更好。

而Atomic操作的底层实现正是利用的CAS机制,好的,我们切入到这个博客的正点。

什么是CAS机制

CAS是英文单词Compare And Swap的缩写,翻译过来就是比较并替换。

CAS机制当中使用了3个基本操作数:内存地址V,旧的预期值A,要修改的新值B。

更新一个变量的时候,只有当变量的预期值A和内存地址V当中的实际值相同时,才会将内存地址V对应的值修改为B。

CAS是英文单词Compare And Swap的缩写,翻译过来就是比较并替换。

CAS机制当中使用了3个基本操作数:内存地址V,旧的预期值A,要修改的新值B。

更新一个变量的时候,只有当变量的预期值A和内存地址V当中的实际值相同时,才会将内存地址V对应的值修改为B。

这样说或许有些抽象,我们来看一个例子:

1.在内存地址V当中,存储着值为10的变量。

image

2.此时线程1想要把变量的值增加1。对线程1来说,旧的预期值A=10,要修改的新值B=11。

image

3.在线程1要提交更新之前,另一个线程2抢先一步,把内存地址V中的变量值率先更新成了11。

image

4.线程1开始提交更新,首先进行A和地址V的实际值比较(Compare),发现A不等于V的实际值,提交失败。

image

5.线程1重新获取内存地址V的当前值,并重新计算想要修改的新值。此时对线程1来说,A=11,B=12。这个重新尝试的过程被称为自旋。

image

6.这一次比较幸运,没有其他线程改变地址V的值。线程1进行Compare,发现A和地址V的实际值是相等的。

image

7.线程1进行SWAP,把地址V的值替换为B,也就是12。

image

从思想上来说,Synchronized属于悲观锁,悲观地认为程序中的并发情况严重,所以严防死守。CAS属于乐观锁,乐观地认为程序中的并发情况不那么严重,所以让线程不断去尝试更新。

看到上面的解释是不是索然无味,查找了很多资料也没完全弄明白,通过几次验证后,终于明白,最终可以理解成一个无阻塞多线程争抢资源的模型。先上代码

import java.util.concurrent.atomic.AtomicBoolean;

/**
 * @author hrabbit
 * 2018/07/16.
 */
public class AtomicBooleanTest implements Runnable {

    private static AtomicBoolean flag = new AtomicBoolean(true);

    public static void main(String[] args) {
        AtomicBooleanTest ast = new AtomicBooleanTest();
        Thread thread1 = new Thread(ast);
        Thread thread = new Thread(ast);
        thread1.start();
        thread.start();
    }
    @Override
    public void run() {
        System.out.println("thread:"+Thread.currentThread().getName()+";flag:"+flag.get());
        if (flag.compareAndSet(true,false)){
            System.out.println(Thread.currentThread().getName()+""+flag.get());
            try {
                Thread.sleep(5000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            flag.set(true);
        }else{
            System.out.println("重试机制thread:"+Thread.currentThread().getName()+";flag:"+flag.get());
            try {
                Thread.sleep(500);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            run();
        }

    }
}

输出的结果:

thread:Thread-1;flag:true
thread:Thread-0;flag:true
Thread-1false
重试机制thread:Thread-0;flag:false
thread:Thread-0;flag:false
重试机制thread:Thread-0;flag:false
thread:Thread-0;flag:false
重试机制thread:Thread-0;flag:false
thread:Thread-0;flag:false
重试机制thread:Thread-0;flag:false
thread:Thread-0;flag:false
重试机制thread:Thread-0;flag:false
thread:Thread-0;flag:false
重试机制thread:Thread-0;flag:false
thread:Thread-0;flag:false
重试机制thread:Thread-0;flag:false
thread:Thread-0;flag:false
重试机制thread:Thread-0;flag:false
thread:Thread-0;flag:false
重试机制thread:Thread-0;flag:false
thread:Thread-0;flag:false
重试机制thread:Thread-0;flag:false
thread:Thread-0;flag:true
Thread-0false

这里无论怎么运行,Thread-1、Thread-0都会执行if=true条件,而且还不会产生线程脏读脏写,这是如何做到的了,这就用到了我们的compareAndSet(boolean expect,boolean update)方法
我们看到当Thread-1在进行操作的时候,Thread一直在进行重试机制,程序原理图:

image

这个图中重最要的是compareAndSet(true,false)方法要拆开成compare(true)方法和Set(false)方法理解,是compare(true)是等于true后,就马上设置共享内存为false,这个时候,其它线程无论怎么走都无法走到只有得到共享内存为true时的程序隔离方法区。

看到这里,这种CAS机制就是完美的吗?这个程序其实存在一个问题,不知道大家注意到没有?

但是这种得不到状态为true时使用递归算法是很耗cpu资源的,所以一般情况下,都会有线程sleep。

CAS的缺点:

1.CPU开销较大
在并发量比较高的情况下,如果许多线程反复尝试更新某一个变量,却又一直更新不成功,循环往复,会给CPU带来很大的压力。

2.不能保证代码块的原子性
CAS机制所保证的只是一个变量的原子性操作,而不能保证整个代码块的原子性。比如需要保证3个变量共同进行原子性的更新,就不得不使用Synchronized了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容

  • Java8张图 11、字符串不变性 12、equals()方法、hashCode()方法的区别 13、...
    Miley_MOJIE阅读 3,693评论 0 11
  • 一、线程状态转换新建(New)可运行(Runnable)阻塞(Blocking)无限期等待(Waiting)限期等...
    达微阅读 568评论 1 2
  • 第6章类文件结构 6.1 概述 6.2 无关性基石 6.3 Class类文件的结构 java虚拟机不和包括java...
    kennethan阅读 908评论 0 2
  • 本系列出于AWeiLoveAndroid的分享,在此感谢,再结合自身经验查漏补缺,完善答案。以成系统。 Java基...
    济公大将阅读 1,524评论 1 6
  • 过年啦!早上,我、妈妈、爸爸和妹妹一起去朋友家里拜年,和妈妈朋友家里的小朋友一起玩搭积木,我搭的可快了我搭出了一只...
    Happy天宇阅读 157评论 0 0