使用GAN实现可变形医学图像配准DEFORMABLE MEDICAL IMAGE REGISTRATION USING GENERATIVE ADVERSARIAL NETWORKS

题目 :使用GAN实现可变形医学图像配准

传统的深度学习配准方法都采用迭代方法,作者采用GAN实现了一种端到端的多模态图像配准方法,消除了传统方法耗时的迭代直接生成有变形场的配准图像。
前人工作:
Sokooti et. al.[6]提出RegNet,它使用经过模拟变形训练的CNNs为一对单一模态图像生成位移向量场。
Vos et. al. [7][提出了一种可变形图像配准网络(dir - net),它以一对固定图像和一对运动图像为输入,非迭代地输出变换后的图像。训练是完全无监督的,不像以前的方法,它没有经过已知配准转换的训练
前人工作中需要改进的地方:
1)使用空间对应的patches 来进行预测转换,但是在低对比度医学图像中寻找相应的patches是不容易的,可能会对配准任务产生不利影响
2)多模态配准由于其固有的寻找空间对应斑块的问题,使得其配准方法具有挑战性

  1. 使用基于强度的代价函数限制了基于DL的图像配准框架的优势
    主要创新点:
    1)利用GANs进行多模态医学图像配准,可以恢复更复杂的变形范围
    2)损失函数的改进,加入VGG,SSIM损失和变形场可逆性(deformation field reversibility变形场可逆性,emmm感觉怪怪的)
    对于多模态配准,我们使用cGANs来保证生成的输出图像(即,转换后的浮动图像)与浮动图像具有相同的特征(强度分布),而与参考图像(不同模态)具有相似的位置。可以通过在图像生成的损失函数中加入适当的约束来实现。此外,我们加强变形一致性,以获得真实的变形场。这可以防止不切实际的配准,并允许任何图像作为参考或浮动图像。不需要对网络进行再训练,就可以从不属于训练集的模式中注册新的测试图像对。

网络结构:

Fig. 1. (a) Generator Network; (b) Discriminator network. n64s1 denotes 64 feature maps (n) and stride (s) 1 for each convolutional layer.

生成网络:




配准后的图像为I_trans
待配准的图像为I_Flt
固定图像为I_Ref
I_trans 应该和I_Flt有相同的强度分布,和I_Ref有相同的结构信息
NMI(ITrans, IRef)表示IRef和IT rans之间的归一化互信息(NMI)(normalized mutual information)再多模态配准任务中常使用
SSIM(IT rans, IRef)表示结构相似度指标(SSIM)[13],基于边缘分布等计算图像相似度
保证结构相似性
V GG(IT rans, IRef)是使用预训练V GG - 16网络的Relu 4 - 1层全部512个feature map的两幅图像之间的L2距离
VGG损失提高了鲁棒性,因为成本函数考虑了在不同尺度上捕获信息的多个特征映射

对抗损失

image.png
循环一致性损失
image.png

实验:

实验一:colour fundus images and fluorescein angiography (FA) images 彩色眼底图像和荧光素血管造影(FA)图像

评价标准:
registration error (ErrDef) :应用变形场和恢复变形场之间的配准误差
95 percentile Hausdorff Distance (HD95):配准前后95% Hausdorff距离
mean absolute surface distance(MAD):配准前后的平均绝对表面距离
mean square error (MSE):配准后的FA图像与原始未变形的FA图像对比。


表1。对比视网膜图像配准前后不同方法的平均性能。Time表示配准一个测试映像对所需的时间(以秒为单位)。

Fig. 2. Example results for retinal fundus and FA registration. (a) Color fundus image; (b) Original FA image; (c) ground truth difference image before simulated deformation; (d) Deformed FA image or the floating image; Difference image (e) before registration; after registration using (f) GANReg; (g) DIRNet; (f) Elastix .

实验二:心脏图像配准

Fig. 3. Example results for cardiac RV registration. Superimposed contours of the ground truth (red) and deformed segmentation mask of moving image (green): (a) before registration; after registration using (b) GANReg; (c) DIRNet; (d) Elastix.
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容