Cemotion 基于NLP的 中文情感倾向分析库

Cemotion是Python下的中文NLP库,可以进行 中文情感倾向分析。

Cemotion的模型经 循环神经网络 训练得到,会为 中文文本 返回 0~1之间的 情感倾向置信度。您可以批量分析中文文本的情感,并部署至Linux、Mac OS、Windows等生产环境中,无需关注内部原理。

该模块依赖于TensorFlow环境(会自动安装),较老的机器可能无法运行。

安装方法

1.进入命令窗口,创建虚拟环境,依次输入以下命令

Linux和Mac OS:

python3 -m venv venv #创建虚拟环境

. venv/bin/activate #激活虚拟环境

附:Apple Silicon安装方法

Apple Silicon请参考 https://pypi.org/project/Cemotion-apple/ 此文档安装

Windows:

python -m venv venv #创建虚拟环境

venv\Scripts\activate #激活虚拟环境

2.安装cemotion库,依次输入

pip install --upgrade pip

pip install cemotion

使用方法

#按文本字符串分析

from cemotion import Cemotion

str_text1 = '配置顶级,不解释,手机需要的各个方面都很完美'

str_text2 = '院线看电影这么多年以来,这是我第一次看电影睡着了。简直是史上最大烂片!没有之一!侮辱智商!大家小心警惕!千万不要上当!再也不要看了!'

c = Cemotion()

print('"', str_text1 , '"\n' , '预测值:{:6f}'.format(c.predict(str_text1) ) , '\n')

print('"', str_text2 , '"\n' , '预测值:{:6f}'.format(c.predict(str_text2) ) , '\n')

#返回内容(该模块返回了这句话的情感置信度,值在0到1之间):

text mode

" 配置顶级,不解释,手机需要的各个方面都很完美 "

预测值:0.999931

text mode

" 院线看电影这么多年以来,这是我第一次看电影睡着了。简直是史上最大烂片!没有之一!侮辱智商!大家小心警惕!千万不要上当!再也不要看了! "

预测值:0.000001

#使用列表进行批量分析

from cemotion import Cemotion

list_text = ['内饰蛮年轻的,而且看上去质感都蛮好,貌似本田所有车都有点相似,满高档的!',

'总而言之,是一家不会再去的店。']

c = Cemotion()

print(c.predict(list_text))

#返回内容(该模块返回了列表中每句话的情感置信度,值在0到1之间):

list mode

[['内饰蛮年轻的,而且看上去质感都蛮好,貌似本田所有车都有点相似,满高档的!', 0.999907], ['总而言之,是一家不会再去的店。', 0.049015]]

如果该模块对您有帮助,感谢Star🙏!

GitHub链接https://github.com/Cyberbolt/Cemotion

电光笔记官网 https://www.cyberlight.xyz/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容

  • typora-copy-images-to: ipic [TOC] 快速开始 在安装Sanic之前,让我们一起来看...
    君惜丶阅读 14,064评论 3 18
  • [TOC] 简介 Selenium 是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就...
    Whyn阅读 1,042评论 0 2
  • 快速开始 在安装Sanic之前,让我们一起来看看Python在支持异步的过程中,都经历了哪些比较重大的更新。 首先...
    hugoren阅读 19,441评论 0 23
  • 1)环境准备: 接口测试的方式有很多,比如可以用工具(jmeter,postman)之类,也可以自己写代码进行接口...
    程序员阿沐阅读 1,343评论 0 8
  • 推荐指数: 6.0 书籍主旨关键词:特权、焦点、注意力、语言联想、情景联想 观点: 1.统计学现在叫数据分析,社会...
    Jenaral阅读 5,700评论 0 5