期望 方差 标准差 标准误差 是什么鬼

期望值(均值)

    例如掷一个骰子每一面出现的概率是1/6

    期望 E(x) = 1x(1/6) + 2x(1/6) +3x(1/6) +4x(1/6) +5x(1/6) +6x(1/6) = 3.5


方差(Variance)

    u = E[x] (期望或均值)

    Var(X) = E[(X-u)²] = \sum_{i=1}^N p_{i} .(x_{i}-\mu)^2  = \frac{1}{N} \sum_{i=1}^N(x_{i}-\mu)^2


标准差(均方差 Standard Deviation)

    SD = \sqrt{(方差)}  = \sqrt{Var(X)}  = \sqrt{\sum_{i=1}^N p_{i} .(x_{i}-\mu)^2 }  = \sqrt{\frac{1}{N} \sum_{i=1}^N(x_{i}-\mu)^2 }


标准误差(Standard Error)

    SE_{\bar{x} } = \frac{SD}{\sqrt{n} }

    n: 抽取的样本份数,在数据采集中可以用采集到的数据代入估算标准误差

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,802评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,109评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,683评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,458评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,452评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,505评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,901评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,550评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,763评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,556评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,629评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,330评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,898评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,897评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,140评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,807评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,339评论 2 342

推荐阅读更多精彩内容

  • 文章作者:Tyan博客:noahsnail.com | CSDN | 简书 声明:作者翻译论文仅为学习,如有侵权请...
    SnailTyan阅读 5,053评论 0 8
  • 1,中位数:按从小到大排列好的中间值 2,众数:出现次数最多的那个数 3,方差:数值和均值的距离的平方数的平均值 ...
    沈婷_bbf1阅读 5,117评论 1 2
  • 一塘残荷,半蓬枯叶。 冬日残荷,不是衰败,而是新生。 残荷的坚守,是一种生存的智慧。
    紫桔梗阅读 353评论 1 3
  • 第五十八章王建龙 不到一个上午,全校第一名考试成绩738分的消息不胫而走,看着成绩榜单上高高的分数,全校学生一边感...
    白色小猪阅读 201评论 0 3
  • 1.瑞士PREMEC CHALK巧可手账四色中性笔多功能笔 多色水笔0.5mm ¥13.5 PS:开会,写读书笔记...
    流年娃娃阅读 160评论 0 0