入门机器学习,我们都要学什么?

作为一个初学机器学习的人,确定学习目标很重要。这篇文章列举出机器学习中基础的常见算法。

机器学习的算法分为监督学习算法和非监督学习算法。是否有监督,就看输入数据是否有标签。输入数据有标签,则为有监督学习,没标签则为无监督学习。

一、监督学习算法

1.线性回归算法

线性回归算法通常用来构建一个预测模型。例如,根据房子年限、房屋面积这两个特性,来预测房屋价格,就可以构建一个线性回归算法。利用已有的数据训练模型,再用训练好的模型预测新的房价。

如果有一个输入x,对应一个输出y,就可以构建一个一维现行回归模型,通常表现为一条直线或取现,当给定一个x值时,对应可以求出y值。当有多个特征共同影响y值时,就可以构建一个多元的线性回归模型。

2.逻辑回归算法

逻辑回归算法用来进行对数据的分类。它和线性回归算法类似,不同之处在于,输出值y是给定的几类。最常见的是分成两类,如好和坏。使用逻辑回归算法,可以根据输入数据的特征,判断该条数据的输出是哪一类的。

3.神经网络算法

神经网络算法也用于数据的预测。神经网络算法通过模拟人类大脑的工作模式来建立模型。前期通过大量的已有数据,进行神经网络模型的训练(给定输入的特征x1、x2、x3......,输出y)。接下来,使用训练好的神经网络预测未知的数据。

4.支撑向量机

支撑向量机可以用来分类和回归分析,其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化。

二、非监督学习

1.Kmeans聚类

聚类是一种非监督学习,它和分类的不同之处在于,分类是有标签的,而聚类是无标签的。分类的结果是知道哪个好哪个坏,而聚类是根据特性,将相似的事物聚集到一起,不考虑它们的好坏。

Kmeas算法是聚类算法中的一种,可以根据输入的特性,将一些数据聚集为成任意多个类别。Kmeas算法使用距离的远近来聚集一类数据。

2.降维

有的时候,一条数据的输入特性可能有很多。比如,在预测房价的问题上,可能会输入房间面积、年限、地理位置相关信息等近百个属性。使用这么多属性进行分析,会为分析过程带来麻烦。降维,就是将这些D个维度的输入属性,缩小成d个维度的输入属性。它将一些输入特性合并或进行某些操作,来减少变量的数量。

3.异常检测

异常检测用来判断某一个数据,其输入特性是否异常。例如,有多个属性来描述一个飞机的发动机,在大量的数据输入中,通过异常检测,来发现哪条数据记录存在异常

在下一阶段的机器学习学习中,将对上面提到的基本算法进行逐一研究。欢迎同样是初学机器学习的小伙伴互相交流~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容