美团即时物流的分布式系统架构设计

背景

美团外卖已经发展了五年,即时物流探索也经历了 3 年多的时间,业务从零孵化到初具规模,在整个过程中积累了一些分布式高并发系统的建设经验。最主要的收获包括两点:

即时物流业务对故障和高延迟的容忍度极低,在业务复杂度提升的同时也要求系统具备分布式、可扩展、可容灾的能力。即时物流系统阶段性的逐步实施分布式系统的架构升级,最终解决了系统宕机的风险。围绕成本、效率、体验核心三要素,即时物流体系大量结合 AI 技术,从定价、ETA、调度、运力规划、运力干预、补贴、核算、语音交互、LBS 挖掘、业务运维、指标监控等方面,业务突破结合架构升级,达到促规模、保体验、降成本的效果。

本文主要介绍在美团即时物流分布式系统架构逐层演变的进展中,遇到的技术障碍和挑战:

订单、骑手规模大,供需匹配过程的超大规模计算问题。遇到节假日或者恶劣天气,订单聚集效应,流量高峰是平常的十几倍。物流履约是线上连接线下的关键环节,故障容忍度极低,不能宕机,不能丢单,可用性要求极高。数据实时性、准确性要求高,对延迟、异常非常敏感。

美团即时物流架构

美团即时物流配送平台主要围绕三件事展开:一是面向用户提供履约的 SLA,包括计算送达时间 ETA、配送费定价等;二是在多目标(成本、效率、体验)优化的背景下,匹配最合适的骑手;三是提供骑手完整履约过程中的辅助决策,包括智能语音、路径推荐、到店提醒等。

在一系列服务背后,是美团强大的技术体系的支持,并由此沉淀出的配送业务架构体系,基于架构构建的平台、算法、系统和服务。庞大的物流系统背后离不开分布式系统架构的支撑,而且这个架构更要保证高可用和高并发。

分布式架构,是相对于集中式架构而言的一种架构体系。分布式架构适用 CAP 理论(Consistency 一致性,Availability 可用性,Partition Tolerance 分区容忍性)。在分布式架构中,一个服务部署在多个对等节点中,节点之间通过网络进行通信,多个节点共同组成服务集群来提供高可用、一致性的服务。

早期,美团按照业务领域划分成多个垂直服务架构;随着业务的发展,从可用性的角度考虑做了分层服务架构。后来,业务发展越发复杂,从运维、质量等多个角度考量后,逐步演进到微服务架构。这里主要遵循了两个原则:不宜过早的进入到微服务架构的设计中,好的架构是演进出来的不是提前设计出来的。

分布式系统实践

上图是比较典型的美团技术体系下的分布式系统结构:依托了美团公共组件和服务,完成了分区扩容、容灾和监控的能力。前端流量会通过 HLB 来分发和负载均衡;在分区内,服务与服务会通过 OCTO 进行通信,提供服务注册、自动发现、负载均衡、容错、灰度发布等等服务。当然也可以通过消息队列进行通信,例如 Kafka、RabbitMQ。在存储层使用 Zebra 来访问分布式数据库进行读写操作。利用 CAT(美团开源的分布式监控系统)进行分布式业务及系统日志的采集、上报和监控。分布式缓存使用 Squirrel+Cellar 的组合。分布式任务调度则是通过 Crane。

在实践过程还要解决几个问题,比较典型的是集群的扩展性,有状态的集群可扩展性相对较差,无法快速扩容机器,无法缓解流量压力。同时,也会出现节点热点的问题,包括资源不均匀、CPU 使用不均匀等等。

首先,配送后台技术团队通过架构升级,将有状态节点变成无状态节点,通过并行计算的能力,让小的业务节点去分担计算压力,以此实现快速扩容。

第二是要解决一致性的问题,对于既要写 DB 也要写缓存的场景,业务写缓存无法保障数据一致性,美团内部主要通过 Databus 来解决,Databus 是一个高可用、低延时、高并发、保证数据一致性的数据库变更实时传输系统。通过 Databus 上游可以监控业务 Binlog 变更,通过管道将变更信息传递给 ES 和其他 DB,或者是其他 KV 系统,利用 Databus 的高可用特性来保证数据最终是可以同步到其他系统中。

第三是我们一直在花精力解决的事情,就是保障集群高可用,主要从三个方面来入手,事前较多的是做全链路压测评,估峰值容量;周期性的集群健康性检查;随机故障演练(服务、机器、组件)。事中做异常报警(性能、业务指标、可用性);快速的故障定位(单机故障、集群故障、IDC 故障、组件异常、服务异常);故障前后的系统变更收集。事后重点做系统回滚;扩容、限流、熔断、降级;核武器兜底。

单 IDC 的快速部署 & 容灾

单 IDC 故障之后,入口服务做到故障识别,自动流量切换;单 IDC 的快速扩容,数据提前同步,服务提前部署,Ready 之后打开入口流量;要求所有做数据同步、流量分发的服务,都具备自动故障检测、故障服务自动摘除;按照 IDC 为单位扩缩容的能力。

多中心尝试

美团 IDC 以分区为单位,存在资源满排,分区无法扩容。美团的方案是多个 IDC 组成虚拟中心,以中心为分区的单位;服务无差别的部署在中心内;中心容量不够,直接增加新的 IDC 来扩容容量。

单元化尝试

相比多中心来说,单元化是进行分区容灾和扩容的更优方案。关于流量路由,美团主要是根据业务特点,采用区域或城市进行路由。数据同步上,异地会出现延迟状况。SET 容灾上要保证同本地或异地 SET 出现问题时,可以快速把 SET 切换到其他 SET 上来承担流量。

智能物流的核心技术能力和平台沉淀

机器学习平台,是一站式线下到线上的模型训练和算法应用平台。之所以构建这个平台,目的是要解决算法应用场景多,重复造轮子的矛盾问题,以及线上、线下数据质量不一致。如果流程不明确不连贯,会出现迭代效率低,特征、模型的应用上线部署出现数据质量等障碍问题。

JARVIS 是一个以稳定性保障为目标的智能化业务运维 AIOps 平台。主要用于处理系统故障时报警源很多,会有大量的重复报警,有效信息很容易被淹没等各种问题。此外,过往小规模分布式集群的运维故障主要靠人和经验来分析和定位,效率低下,处理速度慢,每次故障处理得到的预期不稳定,在有效性和及时性方面无法保证。所以需要 AIOps 平台来解决这些问题。

未来的挑战

经过复盘和 Review 之后,我们发现未来的挑战很大,微服务不再“微”了,业务复杂度提升之后,服务就会变得膨胀。其次,网状结构的服务集群,任何轻微的延迟,都可能导致的网络放大效应。另外复杂的服务拓扑,如何做到故障的快速定位和处理,这也是 AIOps 需要重点解决的难题。最后,就是单元化之后,从集群为单位的运维到以单元为单位的运维,也给美团业务部署能力带来很大的挑战。

Java高级架构师大纲图

如果想提升自己的,看看上图大纲能知道你现在还处于什么阶段要向那些方面发展?

同时小编已将上图知识大纲里面的内容打包好了......

怎么领取呢?

要求:

转发 !转发 !之后关注我

加Q群:948368769,免费领取资料

享给喜欢Java,喜欢编程,有梦想成为架构师的程序员们,希望能够帮助到你们。

最后,做一个爱思考,懂思考,会思考的程序员。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容

  • 背景 美团外卖已经发展了五年,即时物流探索也经历了 3 年多的时间,业务从零孵化到初具规模,在整个过程中积累了一些...
    ongahong阅读 335评论 0 1
  • 关于Mongodb的全面总结 MongoDB的内部构造《MongoDB The Definitive Guide》...
    中v中阅读 31,894评论 2 89
  • 分布式系统面临的第一个问题就是数据分布,即将数据均匀地分布到多个存储节点。另外,为了保证可靠性和可用性,需要将数据...
    olostin阅读 4,550评论 2 26
  • 那些所谓的应该做的事情,那些所谓的幸福人生,我不想去做,但不得不做,这种无力感让我非常不快乐。 ...
    图小麦阅读 348评论 0 0
  • composer n.作家;作曲家;设计者Mozart is a great composer at his ti...
    Flannery阅读 393评论 0 0