MySQL到ClickHouse实时同步-CloudCanal实战

简述

CloudCanal 近期实现了 MySQL(RDS) 到 ClickHouse 实时同步的能力,功能包含全量数据迁移、增量数据迁移、结构迁移能力,以及附带的监控、告警、HA等能力(平台自带)。

ClickHouse 本身并不直接支持 Update 和 Delete 能力,但是他自带的 MergeTree 系列表中 CollapsingMergeTreeVersionedCollapsingMergeTree 可变相实现实时增量的目的,并且性能完全够用,能够比较轻松达到 1k RPS 以上的能力。

接下来的文章,简要介绍 CloudCanal 是如何实现这个能力,以及作为用户我们怎么比较好的使用这个能力。

技术点

结构迁移

CloudCanal 默认提供结构迁移,默认选择 CollapsingMergeTree 作为表引擎,并增加一个默认字段 __cc_ck_sign,源主键作为 sortKey,如下示例:

 CREATE TABLE console.worker_stats
(
    `id` Int64,
    `gmt_create` DateTime,
    `worker_id` Int64,
    `cpu_stat` String,
    `mem_stat` String,
    `disk_stat` String,
    `__cc_ck_sign` Int8 DEFAULT 1
)
ENGINE = CollapsingMergeTree(__cc_ck_sign)
ORDER BY id
SETTINGS index_granularity = 8192

ClickHouse 表引擎中,CollapsingMergeTree 和 VersionedCollapsingMergeTree 都能通过标记位按规则折叠数据,从而达到更新和删除的效果。VersionedCollapsingMergeTree 相比 CollapsingMergeTree 优势在于同一条数据的不同变更可以乱序写入,但是 CloudCanal 选择 CollapsingMergeTree 主要原因在于2点

    1. CloudCanal 中同一条记录必定是按源库变更顺序写入,不存在乱序情况
    1. 不需要维护 VersionedCollapsingMergeTree 中的 Version 字段(版本,也可以起其他名字)

所以 CloudCanal 选择了 CollapsingMergeTree 作为默认表引擎。

写数据

CloudCanal 写数据主要包含全量和增量两种,即单次搬迁存量数据和长期同步,两者写入略有不同。全量写入对端主要工作是批量和多线程,因为 CloudCanal 结构迁移默认设置了标记位字段 __cc_ck_sign default 值为 1, 所以就不需要做特殊处理。

对于增量, CloudCanal 则需要做 3 件事情。

  • 转换 Update、Delete 操作为 Insert
    这一步有两件事情要做,第一件是按照操作类型,填充标记字段值,其中 Insert 和 Update 为 1 ,Delete 为 -1 ,第二件是将对应增量数据的前镜像或者后镜像填充到结果记录中,以便后续 insert 写入。
 for (CanalRowChange rowChange : rowChanges) {
            switch (rowChange.getEventType()) {
                case INSERT: {
                    for (CanalRowData rowData : rowChange.getRowDatasList()) {
                        rowData.getAfterColumnsList().add(nonDeleteCol);
                        records.add(rowData.getAfterColumnsList());
                    }

                    break;
                }
                case UPDATE: {
                    for (CanalRowData rowData : rowChange.getRowDatasList()) {
                        rowData.getBeforeColumnsList().add(deleteCol);
                        records.add(rowData.getBeforeColumnsList());

                        rowData.getAfterColumnsList().add(nonDeleteCol);
                        records.add(rowData.getAfterColumnsList());
                    }

                    break;
                }
                case DELETE: {
                    for (CanalRowData rowData : rowChange.getRowDatasList()) {
                        rowData.getBeforeColumnsList().add(deleteCol);
                        records.add(rowData.getBeforeColumnsList());
                    }

                    break;
                }
                default:
                    throw new CanalException("not supported event type,eventType:" + rowChange.getEventType());
            }
        }
  • 按表归组
    因为 IUD 操作已全部转换为 Insert, 且为全镜像(所有字段都填充了值),所以可以按表归组,然后批量写入。即使单线程也能满足大部分场景的同步性能要求。
protected Map<TableUnit, List<CanalRowChange>> groupByTable(IncrementMessage message) {
        Map<TableUnit, List<CanalRowChange>> data = new HashMap<>();
        for (ParsedEntry entry : message.getEntries()) {
            if (entry.getEntryType() == CanalEntryType.ROWDATA) {
                CanalRowChange rowChange = entry.getRowChange();
                if (!rowChange.isDdl()) {
                    List<CanalRowChange> changes = data.computeIfAbsent(new TableUnit(entry.getHeader().getSchemaName(), entry.getHeader().getTableName()), k -> new ArrayList<>());
                    changes.add(rowChange);
                }
            }
        }

        return data;
    }
  • 并行写入
    将按表归组的数据使用并行执行框架执行,具体不详述。

举个"栗子"

  • 添加数据源


    1.jpg
  • 创建任务,选择数据源和库,并连接成功,点击下一步


    2.jpg
  • 选择数据同步,建议规格至少选择 1 GB.目前 MySQL->ClickHouse 结构迁移自动过滤,所以选择无效。点击下一步


    3.jpg
  • 选择表,默认 ClickHouse 上创建 CollapsingMergeTree 表引擎,并自动添加 __cc_ck_sign 折叠标记字段。点击下一步
    4.jpg
  • 选择字段,点击下一步


    5.jpg
  • 创建任务


    6.jpg
  • 等待任务自动结构迁移、全量迁移、数据同步追上


    7.jpg
  • 造点 Insert、Update、Delete 负载


    8.jpg
  • 延迟追平状态,停止负载


    9.jpg
  • 检查源端 MySQL 表数据,以其中一张表为例


    10.jpg
  • 检查对端 ClickHouse 表数据,不一致?!!


    11.jpg
  • 手动优化下表,数据一致。虽然可以等待 ClickHouse 自动优化,但是如果需要直接得到准确结果,可手动优化(注意:手动优化可能导致数据库机器压力过大)


    12.jpg

常见问题

我在ClickHouse上已经创建了表怎么办?

目前比较建议直接使用 CloudCanal 自动结构迁移的方式来创建任务。

如果已建表为 CollapsingMergeTree 表引擎,请将标记位字段改成 __cc_ck_sign Int8 DEFAULT 1`,再创建任务(此时就不再自动结构迁移,而是使用已存在表)。

如果为其他表引擎,暂时不支持(主要是不支持增量能力,需要 CloudCanal 进一步探索)。

同步过去的数据什么时候合并?

当 CloudCanal 同步数据到 ClickHouse 时,ClickHouse 并不会实时合并数据,也没有一致性可言,所以一般情况是等待合并,或者直接手动合并(造成机器高负载、高IO),optimize table worker_stats FINAL

DDL 怎么做?

目前 CloudCanal 还未支持到 ClickHouse 的 DDL 同步,产品实现上,目前是忽略的。所以如果做 DDL ,加字段建议对端先加,再加源端,减字段反之。

总结

本文简要介绍了 CloudCanal 实现 MySQL(RDS) 到 ClickHouse 数据迁移同步的能力,具备一站式、数据实时特点,从技术点、例子、以及常见问题角度展开。文章如有错误,烦请大家勘误,后续也欢迎大家试用,提供宝贵的意见和建议。
CloudCanal-免费好用的企业级数据同步工具,欢迎品鉴。
了解产品可以查看官方网站: http://www.clougence.com
CloudCanal社区:https://www.askcug.com/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容