Spark Core源码精读计划#7:Spark执行环境的初始化

目录

前言

继事件总线之后,SparkContext第二个初始化的主要组件是SparkEnv,即Spark执行环境。Driver和Executor的正常运行都依赖SparkEnv提供的环境作为支持。SparkEnv初始化成功之后,与Spark存储、计算、监控等相关的底层功能才会真正准备好,可见它几乎与SparkContext同等重要。

SparkEnv内部也包含了很多种组件,比起SparkContext的组件会稍微接地气一点。我们采用与研究SparkContext近似的方式来研究它。

SparkEnv的入口

在文章#2的代码#2.5~#2.6中,我们已经得知Driver执行环境是通过调用SparkEnv.createDriverEnv()方法来创建的,这个方法位于SparkEnv类的伴生对象中。同理,也有createExecutorEnv()方法。我们从这两个方法入手来看一下代码。

代码#7.1 - o.a.s.SparkEnv.createDriverEnv()与createExecutorEnv()方法

  private[spark] def createDriverEnv(
      conf: SparkConf,
      isLocal: Boolean,
      listenerBus: LiveListenerBus,
      numCores: Int,
      mockOutputCommitCoordinator: Option[OutputCommitCoordinator] = None): SparkEnv = {
    assert(conf.contains(DRIVER_HOST_ADDRESS),
      s"${DRIVER_HOST_ADDRESS.key} is not set on the driver!")
    assert(conf.contains("spark.driver.port"), "spark.driver.port is not set on the driver!")
    val bindAddress = conf.get(DRIVER_BIND_ADDRESS)
    val advertiseAddress = conf.get(DRIVER_HOST_ADDRESS)
    val port = conf.get("spark.driver.port").toInt
    val ioEncryptionKey = if (conf.get(IO_ENCRYPTION_ENABLED)) {
      Some(CryptoStreamUtils.createKey(conf))
    } else {
      None
    }
    create(
      conf,
      SparkContext.DRIVER_IDENTIFIER,
      bindAddress,
      advertiseAddress,
      Option(port),
      isLocal,
      numCores,
      ioEncryptionKey,
      listenerBus = listenerBus,
      mockOutputCommitCoordinator = mockOutputCommitCoordinator
    )
  }

  private[spark] def createExecutorEnv(
      conf: SparkConf,
      executorId: String,
      hostname: String,
      numCores: Int,
      ioEncryptionKey: Option[Array[Byte]],
      isLocal: Boolean): SparkEnv = {
    val env = create(
      conf,
      executorId,
      hostname,
      hostname,
      None,
      isLocal,
      numCores,
      ioEncryptionKey
    )
    SparkEnv.set(env)
    env
  }

可见,它们都是调用伴生对象内的create()方法来创建SparkEnv的。这个方法很长,所以先来看一看它的声明。

代码#7.2 - o.a.s.SparkEnv.create()方法的声明

  private def create(
      conf: SparkConf,
      executorId: String,
      bindAddress: String,
      advertiseAddress: String,
      port: Option[Int],
      isLocal: Boolean,
      numUsableCores: Int,
      ioEncryptionKey: Option[Array[Byte]],
      listenerBus: LiveListenerBus = null,
      mockOutputCommitCoordinator: Option[OutputCommitCoordinator] = None): SparkEnv = { /*...*/ }

其中有几个参数需要说明一下。

  • executorId:Executor的唯一标识。如果是Driver的话,值就是字符串"driver"。
  • bindAddress/advertiseAddress:分别是监听Socket绑定的地址,与RPC端点的地址。
  • isLocal:是否为本地模式。
  • numUsableCores:分配给Driver或Executor的CPU核心数。
  • ioEncryptionKey:I/O加密的密钥,当spark.io.encryption.enabled配置项启用时才有效。

SparkEnv初始化的组件

我们按照create()方法中的代码顺序,对SparkEnv内涉及到的组件做简要介绍。

SecurityManager

SecurityManager即安全管理器。它负责通过共享密钥的方式进行认证,以及基于ACL(Access Control List,访问控制列表)管理Spark内部的账号和权限。其初始化代码如下。

代码#7.3 - create()方法中SecurityManager的初始化

    val securityManager = new SecurityManager(conf, ioEncryptionKey)
    if (isDriver) {
      securityManager.initializeAuth()
    }

    ioEncryptionKey.foreach { _ =>
      if (!securityManager.isEncryptionEnabled()) {
        logWarning("I/O encryption enabled without RPC encryption: keys will be visible on the " +
          "wire.")
      }
    }

RpcEnv

RpcEnv即RPC环境。在前面已经讲过,Spark的各个实体间必然会涉及大量的网络通信,这些通信实体在Spark的RPC体系中会抽象为RPC端点(RpcEndpoint)及其引用(RpcEndpointRef)。RpcEnv为RPC端点提供处理消息的环境,并负责RPC端点的注册,端点之间消息的路由,以及端点的销毁等。RPC环境的初始化代码如下。

代码#7.4 - create()方法中RpcEnv的初始化

    val systemName = if (isDriver) driverSystemName else executorSystemName
    val rpcEnv = RpcEnv.create(systemName, bindAddress, advertiseAddress, port.getOrElse(-1), conf,
      securityManager, numUsableCores, !isDriver)

    if (isDriver) {
      conf.set("spark.driver.port", rpcEnv.address.port.toString)
    }

代码#7.5 - o.a.s.rpc.RpcEnv.create()方法

  def create(
      name: String,
      bindAddress: String,
      advertiseAddress: String,
      port: Int,
      conf: SparkConf,
      securityManager: SecurityManager,
      numUsableCores: Int,
      clientMode: Boolean): RpcEnv = {
    val config = RpcEnvConfig(conf, name, bindAddress, advertiseAddress, port, securityManager,
      numUsableCores, clientMode)
    new NettyRpcEnvFactory().create(config)
  }

Spark的RPC底层是利用Netty实现的,NettyRpcEnv目前也是RpcEnv唯一的实现类。RPC的内部细节很多,之后会用多篇文章来详细分析。

SerializerManager

SerializerManager即序列化管理器。在Spark存储或交换数据时,往往先需要将数据序列化或反序列化,为了节省空间可能还要对数据进行压缩,SerializerManager就是负责这些工作的组件。其初始化代码如下。

代码#7.6 - create()方法中SerializerManager的初始化

    val serializer = instantiateClassFromConf[Serializer](
      "spark.serializer", "org.apache.spark.serializer.JavaSerializer")
    logDebug(s"Using serializer: ${serializer.getClass}")

    val serializerManager = new SerializerManager(serializer, conf, ioEncryptionKey)

    val closureSerializer = new JavaSerializer(conf)

instantiateClassFromConf()方法是create()方法内定义的,它调用了工具类Utils的classForName()方法,通过反射创建类的实例。序列化器的类型可以用SparkConf配置项spark.serializer指定,其默认值是org.apache.spark.serializer.JavaSerializer。我们在日常开发中常用的还有KryoSerializer。

序列化器有两个,serializer是数据的序列化器,closureSerializer则是闭包的序列化器。后者在调度逻辑(如DAGScheduler、TaskSetManager)中经常用到,其类型固定为JavaSerializer,不能修改。

BroadcastManager

BroadcastManager即广播管理器,它在前面的代码#4.3中已经出现过。它除了为用户提供广播共享数据的功能之外,在Spark Core内部也有广泛的应用,如共享通用配置项或通用数据结构等等。其初始化代码只有一句,不再贴了。

MapOutputTracker

MapOutputTracker即Map输出跟踪器。在Shuffle过程中,Map任务通过Shuffle Write阶段产生了中间数据,Reduce任务进行Shuffle Read时需要知道哪些数据位于哪个节点上,以及Map输出的状态等信息。MapOutputTracker就负责维护这些信息,其初始化代码如下。

代码#7.7 - create()方法中MapOutputTracker的初始化

    val mapOutputTracker = if (isDriver) {
      new MapOutputTrackerMaster(conf, broadcastManager, isLocal)
    } else {
      new MapOutputTrackerWorker(conf)
    }

    mapOutputTracker.trackerEndpoint = registerOrLookupEndpoint(MapOutputTracker.ENDPOINT_NAME,
      new MapOutputTrackerMasterEndpoint(
        rpcEnv, mapOutputTracker.asInstanceOf[MapOutputTrackerMaster], conf))

可见是按照当前实体是Driver或Executor分为两种情况处理的。创建完MapOutputTracker实例之后,还会调用registerOrLookupEndpoint()方法,注册(Driver情况)或查找(Executor情况)对应的RPC端点,并返回其引用。

ShuffleManager

ShuffleManager即Shuffle管理器。顾名思义,它负责管理Shuffle阶段的机制,并提供Shuffle方法的具体实现。其初始化代码如下。

代码#7.8 - create()方法中ShuffleManager的初始化

   val shortShuffleMgrNames = Map(
      "sort" -> classOf[org.apache.spark.shuffle.sort.SortShuffleManager].getName,
      "tungsten-sort" -> classOf[org.apache.spark.shuffle.sort.SortShuffleManager].getName)
    val shuffleMgrName = conf.get("spark.shuffle.manager", "sort")
    val shuffleMgrClass =
      shortShuffleMgrNames.getOrElse(shuffleMgrName.toLowerCase(Locale.ROOT), shuffleMgrName)
    val shuffleManager = instantiateClass[ShuffleManager](shuffleMgrClass)

ShuffleManager的种类可以通过配置项spark.shuffle.manager设置,默认为sort,即SortShuffleManager。取得对应的ShuffleManager类名之后,通过反射构建其实例。Shuffle是Spark计算过程中非常重要的一环,之后会深入地研究它。

MemoryManager

MemoryManager即内存管理器。顾名思义,它负责Spark集群节点内存的分配、利用和回收。Spark作为一个内存优先的大数据处理框架,内存管理机制是非常精细的,主要涉及存储和执行两大方面。其初始化代码如下。

代码#7.9 - create()方法中MemoryManager的初始化

    val useLegacyMemoryManager = conf.getBoolean("spark.memory.useLegacyMode", false)
    val memoryManager: MemoryManager =
      if (useLegacyMemoryManager) {
        new StaticMemoryManager(conf, numUsableCores)
      } else {
        UnifiedMemoryManager(conf, numUsableCores)
      }

MemoryManager有两种实现,可以使用spark.memory.useLegacyMode配置项控制使用哪种。旧版的内存管理器是StaticMemoryManager,即静态内存管理器。新版(1.6.0版本之后)的内存管理器是UnifiedMemoryManager,即统一内存管理器,它也是当前的默认实现,相对于静态内存管理而言也更为先进。在之后讲解涉及存储和计算方面的细节时,会一同探究MemoryManager的具体实现。

BlockManager

BlockManager即块管理器。块作为Spark内部数据的基本单位,与操作系统中的“块”和HDFS中的“块”都不太相同。它可以存在于堆内内存,也可以存在于堆外内存和外存(磁盘)中,是Spark数据的通用表示方式。BlockManager就负责管理块的存储、读写流程和状态信息,其初始化代码如下。

代码#7.10 - create()方法中BlockManager的初始化

    val blockTransferService =
      new NettyBlockTransferService(conf, securityManager, bindAddress, advertiseAddress,
        blockManagerPort, numUsableCores)

    val blockManagerMaster = new BlockManagerMaster(registerOrLookupEndpoint(
      BlockManagerMaster.DRIVER_ENDPOINT_NAME,
      new BlockManagerMasterEndpoint(rpcEnv, isLocal, conf, listenerBus)),
      conf, isDriver)

    val blockManager = new BlockManager(executorId, rpcEnv, blockManagerMaster,
      serializerManager, conf, memoryManager, mapOutputTracker, shuffleManager,
      blockTransferService, securityManager, numUsableCores)

在初始化BlockManager之前,还需要先初始化块传输服务BlockTransferService,以及BlockManager的主节点BlockManagerMaster。BlockManager也是采用主从结构设计的,Driver上存在主RPC端点BlockManagerMasterEndpoint,而各个Executor上都存在从RPC端点BlockManagerSlaveEndpoint。

BlockManager是整个Spark存储子系统的基石,之后会先于上面的MemoryManager做介绍。

MetricsSystem

MetricsSystem即度量系统。它是Spark监控体系的后端部分,负责收集与输出度量(也就是各类监控指标)数据。度量系统由系统实例Instance、度量数据源Source、度量输出目的地Sink三部分组成。其在SparkEnv里的初始化代码如下。

代码7.11 - create()方法中MetricsSystem的初始化

    val metricsSystem = if (isDriver) {
      MetricsSystem.createMetricsSystem("driver", conf, securityManager)
    } else {
      conf.set("spark.executor.id", executorId)
      val ms = MetricsSystem.createMetricsSystem("executor", conf, securityManager)
      ms.start()
      ms
    }

这里也是分两种情况处理的。在Driver端初始化MetricsSystem时,需要依赖TaskScheduler初始化完毕后生成的Application ID,故不会马上启动它,可以参见代码#2.7。在Executor端初始化时就不用等待,因为Executor ID已经存在了。

OutputCommitCoordinator

OutputCommitCoordinator即输出提交协调器。如果需要将Spark作业的结果数据持久化到外部存储(最常见的就是HDFS),就需要用到它来判定作业的每个Stage是否有权限提交。其初始化代码如下。

代码#7.12 - create()方法中OutputCommitCoordinator的初始化

    val outputCommitCoordinator = mockOutputCommitCoordinator.getOrElse {
      new OutputCommitCoordinator(conf, isDriver)
    }
    val outputCommitCoordinatorRef = registerOrLookupEndpoint("OutputCommitCoordinator",
      new OutputCommitCoordinatorEndpoint(rpcEnv, outputCommitCoordinator))
    outputCommitCoordinator.coordinatorRef = Some(outputCommitCoordinatorRef)

可见,在Driver上还注册了其RPC端点OutputCommitCoordinatorEndpoint,各个Executor会通过其引用来访问它。

SparkEnv的创建与保存

在create()方法的最后,会构建SparkEnv类的实例,创建Driver端的临时文件夹,并返回该实例。

代码#7.13 - SparkEnv.create()方法的结尾

    val envInstance = new SparkEnv(
      executorId,
      rpcEnv,
      serializer,
      closureSerializer,
      serializerManager,
      mapOutputTracker,
      shuffleManager,
      broadcastManager,
      blockManager,
      securityManager,
      metricsSystem,
      memoryManager,
      outputCommitCoordinator,
      conf)

    if (isDriver) {
      val sparkFilesDir = Utils.createTempDir(Utils.getLocalDir(conf), "userFiles").getAbsolutePath
      envInstance.driverTmpDir = Some(sparkFilesDir)
    }

    envInstance

SparkEnv的全部初始化流程都在伴生对象中,其类中反而没有太多东西,主要是控制SparkEnv停止的相关逻辑,不再赘述。

如同SparkContext一样,SparkEnv在伴生对象中也会将已创建的实例保存起来,避免重复创建,也保证在同一节点上执行环境的一致性。get()与set()方法的代码非常简单,就不贴出来了。

总结

本文从SparkEnv的初始化方法入手,按顺序简述了十余个与Spark执行环境相关的内部组件及其初始化逻辑。这些组件与Spark框架的具体执行流程息息相关,我们之后也会深入研究其中的一部分,特别重要的如RPC环境RpcEnv、Shuffle管理器ShuffleManager、内存管理器MemoryManager、块管理器BlockManager等。

最后仍然用一张简图来概括。

图#7.1 - SparkEnv初始化顺序

下一篇文章计划研究RPC环境。它比前面讲过的事件总线更加底层,因此也有更多的细节等着我们去探索。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容