Swin Transformer 环境搭建

Swin Transformer 环境搭建

1. 摘要

本文主要对 Swin-Transformer-Object-Detection 进行简要介绍,并考虑到其环境安装对新手而言是一个常见的挑战,因此本文实现了其对应的环境安装

2. 介绍

Swin Transformer

Swin Transformer是微软研究院2021年发表在ICCV上的一篇文章,已获得ICCV-2021-best-paper的荣誉称号。该论文一经发表就已在多项视觉任务中霸榜(如下图)。

image-20220914210930652

3. 环境配置

Swin Transformer官网上的模型是在mmdetection的基础上实现的。mmdetection是商汤科技(2018 COCO 目标检测挑战赛冠军)和香港中文大学开源的一个基于Pytorch实现的深度学习目标检测工具箱。因此想要使用Swin Transformer相关的模型,只需要配置mmdetection环境,在下载模型对应的配置文件即可。

mmdetection的安装,目前主要有以下两个官方网址:

  1. https://github.com/open-mmlab/mmdetection/blob/master/docs/en/get_started.md
  2. https://mmdetection.readthedocs.io/zh_CN/latest/get_started.html#id2(中文)

虽然按照上面官网的要求,一步步安装,可最后还是会出现许多问题,表明官网的步骤需要进行修改,因此下面的配置过程,是小编亲自实现的,经过验证。

首先对小编的配置环境是进行一个说明:

  1. 主机系统:ubuntu18.04
  2. 显卡:NVIDIA GeForce RTX 3080 Ti
  3. 显卡驱动:NVIDIA-SMI 510.60.02
  4. CUDA Version: 11.6
  5. docker 镜像: jupyter/tensorflow-notebook ubuntu-20.04

下面就是小编在docker容器中对mmdetection进行环境配置的全过程。

3.1 pytorch安装

pytorch安装

Notes:这里的cudatoolkit-dev 和 pytorch 版本,建议小伙伴们在pytorch官网进行选择(如下图),需要参考自己显卡驱动对应的CUDA版本,最后复制推荐的安装命令即可。(如果环境中没有nvcc的小伙伴,建议将cudatoolkit改为cudatoolkit-dev,否则后续可能报错)

pytorch 版本

3.2 mmcv安装

mmcv安装

-f 后面的链接,需要根据实际情况进行配置,上方是CUDA=11.3 和 pytorch=1.10 版本下安装的,如果小伙伴的环境有区别可以参照这个网站进行配置(如下图):https://mmcv.readthedocs.io/en/latest/get_started/installation.html#

如果 CUDA=11.5 pytorch=1.11 对应的安装命令如下:

3.3 mmdet安装

  • pip 安装 (与下面的源码编译,二选一即可)
pip 安装
  • 源码编译
源码编译

3.4 apex安装(可选)

Nvidia Apex是由Nvidia公司维护的一套实用工具包,用于简化Pytorch的下游任务,大部分代码是由Torch底层组成。主要作用是:

  • 自动混合精度(Auto Mix Precision)

  • 分布式训练(Distributed Training)

apex安装

4. 环境验证

官网的环境验证代码,不会显示结果,因此下面的代码是小编修改过后的。

环境验证
  • 结果


    结果

获取本文全部代码,公众号后台回复"mmde"即可。


本文由mdnice多平台发布

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容