Eclipse连接Hadoop集群及WordCount实践

声明:作者原创,转载注明出处。

作者:帅气陈吃苹果

一、环境准备

1、JDK安装与配置

2、Eclipse下载

下载解压即可,下载地址:https://pan.baidu.com/s/1i51UsVN

3、Hadoop下载与配置

下载解压即可,下载地址:https://pan.baidu.com/s/1i57ZXqt
配置环境变量:
在系统变量中新建变量:HADOOP_HOME,值:E:\Hadoop\hadoop-2.6.5
在Path系统变量中添加Hadoop的/bin路径,值:E:\Hadoop\hadoop-2.6.5\bin

4、正常的集群状态

确保集群处于启动状态,并且windows本地机器与集群中的master可以互相ping通,并且可以进行SSH连接;
在 C:\Windows\System32\drivers\etc\hosts文件中,追加Hadoop集群master节点的IP地址和主机名映射,如下:

192.168.29.188 vnet

5、Eclipse-Hadoop插件下载

下载地址:https://pan.baidu.com/s/1o7791VG

下载后将插件放在Eclipse安装目录的plugins目录下,重启Eclipse即可。

6、Eclipse的Map/Reduce视图设置

1)重启Eclipse后,在左侧栏可以看到此视图:

[图片上传失败...(image-e97b85-1513346897411)]

打开Window--->Perspective--->Open Perspective--->Other...,选择Map/Reduce。若没有看到此选项,在确保插件放入plugins目录后已经重启的情况下,猜测可能是Eclipse或插件的版本问题导致,需重新下载相匹配的版本。

<img width="300" src="https://i.imgur.com/Twag1wi.png" />

2)打开Window--->Preferences--->Hadoop Map/Reduce,配置Hadoop的安装目录。

<img width="600" src="https://i.imgur.com/1jCAkYr.png" />

二、WordCount项目实战

1、Hadoop Location的创建与配置

在Eclipse底部栏中选择Map/Reduce Locations视图,右键选择New Hadoop Locations,如下图:

<img width="700" src="https://i.imgur.com/NPaZQXL.png" />

具体配置如下:

<img width="600" src="https://i.imgur.com/vDAsRBj.png" />

点击finish,若没有报错,则表示连接成功,在Eclipse左侧的DFS Locations中可以看到HDFS文件系统的目录结构和文件内容;

若遇到 An internal error occurred during: "Map/Reduce location status updater". java.lang.NullPointerExcept的问题,则表示当前HDFS文件系统为空,只需在HDFS文件系统上创建文件,刷新DFS Locations后即可看到文件系统内容;

2、创建输入文件及目录

在master节点上创建输入文件,并上传到HDFS对应的输入目录中,如下:

 //然后输入单词计数的文件内容,保存
vi input.txt                                                 

 //将Linux本地文件系统的文件上传到HDFS上
hdfs dfs -put input.txt /user/root/input/           

input.txt

hello world 

hello hadoop

bye

bye hadoop

3、创建Map/Reduce项目

File--->New--->Project--->Map/Reduce Project,填入项目名称,还需要选择Hadoop Library的路径,这里选择“Use default Hadoop”即可,就是我们之前在Eclipse中配置的Hadoop。

WordCount.java代码:

package com.wecon.sqchen;

import java.io.IOException;  
import java.util.StringTokenizer;  
  
import org.apache.hadoop.conf.Configuration;  
import org.apache.hadoop.fs.Path;  
import org.apache.hadoop.io.IntWritable;  
import org.apache.hadoop.io.LongWritable;  
import org.apache.hadoop.io.Text;  
import org.apache.hadoop.mapreduce.Job;  
import org.apache.hadoop.mapreduce.Mapper;  
import org.apache.hadoop.mapreduce.Reducer;  
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;  
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;  
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;  
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;  
  
public class WordCount {  
  
    public static class WordCountMap extends  
            Mapper<LongWritable, Text, Text, IntWritable> {  
  
        private final IntWritable one = new IntWritable(1);  
        private Text word = new Text();  
  
        public void map(LongWritable key, Text value, Context context)  
                throws IOException, InterruptedException {  
            String line = value.toString();  
            StringTokenizer token = new StringTokenizer(line);  
            while (token.hasMoreTokens()) {  
                word.set(token.nextToken());  
                context.write(word, one);  
            }  
        }  
    }  
  
    public static class WordCountReduce extends  
            Reducer<Text, IntWritable, Text, IntWritable> {  
  
        public void reduce(Text key, Iterable<IntWritable> values,  
                Context context) throws IOException, InterruptedException {  
            int sum = 0;  
            for (IntWritable val : values) {  
                sum += val.get();  
            }  
            context.write(key, new IntWritable(sum));  
        }  
    }  
  
    public static void main(String[] args) throws Exception {
        System.setProperty("hadoop.home.dir","E:/Hadoop/hadoop-2.6.5" );
        Configuration conf = new Configuration();  
        Job job = new Job(conf);  
        job.setJarByClass(WordCount.class);  
        job.setJobName("wordcount");  
  
        job.setOutputKeyClass(Text.class);  
        job.setOutputValueClass(IntWritable.class);  
  
        job.setMapperClass(WordCountMap.class);  
        job.setReducerClass(WordCountReduce.class);  
  
        job.setInputFormatClass(TextInputFormat.class);  
        job.setOutputFormatClass(TextOutputFormat.class);  
  
        FileInputFormat.addInputPath(job, new Path(args[0]));  
        FileOutputFormat.setOutputPath(job, new Path(args[1]));  
  
        job.waitForCompletion(true);  
    }  
}  

右键打开Run AS ---> Run Configurations,配置Arguments,即程序中指定的文件输入目录和输出目录,如下:

<img width="600" src="https://i.imgur.com/pFqvNr2.png" />

配置好后,Run AS---> Java Application,若无报错,则表示程序执行成功,在Eclipse左侧的
DFS Locations刷新后,可以看到输出目录和输出文件,如下:

[图片上传失败...(image-40998c-1513346897411)]

4、解决遇到的问题

1)java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.

解决方式:

在main方法中、job提交之前,指定本地Hadoop的安装路径,即添加下列代码:
System.setProperty("hadoop.home.dir","E:/Hadoop/hadoop-2.6.5" );

2)(null) entry in command string: null chmod 0700 E:\tmp\hadoop-Administrator\mapred\staging \Administr

解决方式:

参考链接:https://ask.hellobi.com/blog/jack/5063
链接中所需文件下载地址:https://pan.baidu.com/s/1i4Z4aVV

3)org.apache.hadoop.security.AccessControlException: Permission denied: user=Administrator, access=WRITE, inode="/user/root":root:supergroup:drwxr-xr-x

解决方式:

这是本地用户执行Application时,HDFS上的用户权限问题;
参考链接:http://blog.csdn.net/Camu7s/article/details/50231625
采用第三种方法,在master节点机器上执行下列命令:

adduser Administrator

groupadd supergroup

usermod -a -G supergroup Administrator

4)org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://vnet:9000/user/root/output already exists

解决方式:

这是因为该项目的输出目录在HDFS中已经存在,而输出目录是在程序运行过程中创建的,不允许提前存在,所以只需删除HDFS上的对应output目录即可。

5)

log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.
MutableMetricsFactory).

log4j:WARN Please initialize the log4j system properly.

log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.

解决方式:

在项目的src目录下,New--->Other--->General--->File,创建文件“log4j.properties”,文件内容如下:

log4j.rootLogger=WARN, stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender

log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n

5、参考链接:

http://blog.csdn.net/bd_ai_iot/article/details/78287379

http://blog.csdn.net/songchunhong/article/details/47046701

http://blog.chinaunix.net/uid-20577907-id-3613584.html

http://blog.csdn.net/jediael_lu/article/details/38705371

最后,欢迎指正。喜欢的话,点个赞呗,请你吃苹果。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容

  • Hadoop的编程可以是在Linux环境或Winows环境中,在此以Windows环境为示例,以Eclipse工具...
    欢醉阅读 1,416评论 0 28
  • hadoop是什么?HDFS与MapReduceHive:数据仓库,在HDFS之上,后台执行,帮你执行。faceb...
    Babus阅读 2,362评论 0 5
  • 目的这篇教程从用户的角度出发,全面地介绍了Hadoop Map/Reduce框架的各个方面。先决条件请先确认Had...
    SeanC52111阅读 1,708评论 0 1
  • 首先,我们在使用前先看看HDFS是什麽?这将有助于我们是以后的运维使用和故障排除思路的获得。 HDFS采用mast...
    W_Bousquet阅读 4,174评论 0 2
  • 时间过的真快,转眼十月已经过去,来到新江湖二班,已经有两个月,想想自己在八月到九月这整整一个多月里其实算是直接放弃...
    小鹏strive阅读 260评论 9 11