Deep Learning - Face Recognition

Face Recognition for the Happy House

Welcome to the first assignment of week 4! Here you will build a face recognition system. Many of the ideas presented here are from FaceNet. In lecture, we also talked about DeepFace.

Face recognition problems commonly fall into two categories:

  • Face Verification - "is this the claimed person?". For example, at some airports, you can pass through customs by letting a system scan your passport and then verifying that you (the person carrying the passport) are the correct person. A mobile phone that unlocks using your face is also using face verification. This is a 1:1 matching problem.
  • Face Recognition - "who is this person?". For example, the video lecture showed a face recognition video (https://www.youtube.com/watch?v=wr4rx0Spihs) of Baidu employees entering the office without needing to otherwise identify themselves. This is a 1:K matching problem.

FaceNet learns a neural network that encodes a face image into a vector of 128 numbers. By comparing two such vectors, you can then determine if two pictures are of the same person.

  • Implement the triplet loss function
  • Use a pretrained model to map face images into 128-dimensional encodings
  • Use these encodings to perform face verification and face recognition

In this exercise, we will be using a pre-trained model which represents ConvNet activations using a "channels first" convention, as opposed to the "channels last" convention used in lecture and previous programming assignments.

Let's load the required packages.

from keras.models import Sequential
from keras.layers import Conv2D, ZeroPadding2D, Activation, Input, concatenate
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.layers.pooling import MaxPooling2D, AveragePooling2D
from keras.layers.merge import Concatenate
from keras.layers.core import Lambda, Flatten, Dense
from keras.initializers import glorot_uniform
from keras.engine.topology import Layer
from keras import backend as K
K.set_image_data_format('channels_first')
import cv2
import os
import numpy as np
from numpy import genfromtxt
import pandas as pd
import tensorflow as tf
from fr_utils import *
from inception_blocks_v2 import *

%matplotlib inline
%load_ext autoreload
%autoreload 2

np.set_printoptions(threshold=np.nan)

0 - Naive Face Verification

In Face Verification, you're given two images and you have to tell if they are of the same person. The simplest way to do this is to compare the two images pixel-by-pixel. If the distance between the raw images are less than a chosen threshold, it may be the same person!

image.png

1 - Encoding face images into a 128-dimensional vector

1.1 - Using an ConvNet to compute encodings

The FaceNet model takes a lot of data and a long time to train. So following common practice in applied deep learning settings, let's just load weights that someone else has already trained. The network architecture follows the Inception model from Szegedy et al..

image.png

1.2 - The Triplet Loss

image.png

Training will use triplets of images (A, P, N):

  • A is an "Anchor" image--a picture of a person.
  • P is a "Positive" image--a picture of the same person as the Anchor image.
  • N is a "Negative" image--a picture of a different person than the Anchor image.


    image.png
# GRADED FUNCTION: triplet_loss

def triplet_loss(y_true, y_pred, alpha = 0.2):
    """
    Implementation of the triplet loss as defined by formula (3)
    
    Arguments:
    y_true -- true labels, required when you define a loss in Keras, you don't need it in this function.
    y_pred -- python list containing three objects:
            anchor -- the encodings for the anchor images, of shape (None, 128)
            positive -- the encodings for the positive images, of shape (None, 128)
            negative -- the encodings for the negative images, of shape (None, 128)
    
    Returns:
    loss -- real number, value of the loss
    """
    
    anchor, positive, negative = y_pred[0], y_pred[1], y_pred[2]
    
    # Step 1: Compute the (encoding) distance between the anchor and the positive, you will need to sum over axis=-1
    pos_dist =  tf.reduce_sum(tf.square(tf.subtract(anchor, positive)))    
    # Step 2: Compute the (encoding) distance between the anchor and the negative, you will need to sum over axis=-1
    neg_dist =  tf.reduce_sum(tf.square(tf.subtract(anchor, negative)),axis=-1)
    # Step 3: subtract the two previous distances and add alpha.
    basic_loss = tf.add(tf.subtract(pos_dist,neg_dist),alpha)
    # Step 4: Take the maximum of basic_loss and 0.0. Sum over the training examples.
    loss = tf.reduce_sum(tf.maximum(basic_loss, 0.0))
    
    return pos_dist

2 - Loading the trained model

FaceNet is trained by minimizing the triplet loss. But since training requires a lot of data and a lot of computation, we won't train it from scratch here. Instead, we load a previously trained model. Load a model using the following cell; this might take a couple of minutes to run.

FRmodel.compile(optimizer = 'adam', loss = triplet_loss, metrics = ['accuracy'])
load_weights_from_FaceNet(FRmodel)

Here're some examples of distances between the encodings between three individuals:

image.png

Let's now use this model to perform face verification and face recognition!

3 - Applying the model

3.1 - Face Verification

# GRADED FUNCTION: verify

def verify(image_path, identity, database, model):
    """
    Function that verifies if the person on the "image_path" image is "identity".
    
    Arguments:
    image_path -- path to an image
    identity -- string, name of the person you'd like to verify the identity. Has to be a resident of the Happy house.
    database -- python dictionary mapping names of allowed people's names (strings) to their encodings (vectors).
    model -- your Inception model instance in Keras
    
    Returns:
    dist -- distance between the image_path and the image of "identity" in the database.
    door_open -- True, if the door should open. False otherwise.
    """
  
    # Step 1: Compute the encoding for the image. Use img_to_encoding() see example above. 
    encoding = img_to_encoding(image_path,model)

    # Step 2: Compute distance with identity's image 
    dist = np.linalg.norm(encoding-database[identity])


    # Step 3: Open the door if dist < 0.7, else don't open
    if dist<0.7:
        print("It's " + str(identity) + ", welcome home!")
        door_open = True
    else:
        print("It's not " + str(identity) + ", please go away")
        door_open = False
  
    return dist, door_open
image.png

verify("images/camera_0.jpg", "younes", database, FRmodel)

It's younes, welcome home! (0.65939283, True)

3.2 - Face Recognition

Your face verification system is mostly working well. But since Kian got his ID card stolen, when he came back to the house that evening he couldn't get in!

To reduce such shenanigans, you'd like to change your face verification system to a face recognition system. This way, no one has to carry an ID card anymore. An authorized person can just walk up to the house, and the front door will unlock for them!

You'll implement a face recognition system that takes as input an image, and figures out if it is one of the authorized persons (and if so, who). Unlike the previous face verification system, we will no longer get a person's name as another input.

Exercise:

  1. Compute the target encoding of the image from image_path
  2. Find the encoding from the database that has smallest distance with the target encoding.
    • Initialize the min_dist variable to a large enough number (100). It will help you keep track of what is the closest encoding to the input's encoding.
    • Loop over the database dictionary's names and encodings. To loop use for (name, db_enc) in database.items().
      • Compute L2 distance between the target "encoding" and the current "encoding" from the database.
      • If this distance is less than the min_dist, then set min_dist to dist, and identity to name.
# GRADED FUNCTION: who_is_it

def who_is_it(image_path, database, model):
    """
    Implements face recognition for the happy house by finding who is the person on the image_path image.
    
    Arguments:
    image_path -- path to an image
    database -- database containing image encodings along with the name of the person on the image
    model -- your Inception model instance in Keras
    
    Returns:
    min_dist -- the minimum distance between image_path encoding and the encodings from the database
    identity -- string, the name prediction for the person on image_path
    """
    
  
    ## Step 1: Compute the target "encoding" for the image. Use img_to_encoding() see example above. ## 
    encoding = img_to_encoding(image_path,model)

    ## Step 2: Find the closest encoding ##

    # Initialize "min_dist" to a large value, say 100 
    min_dist = 100

    # Loop over the database dictionary's names and encodings.
    for (name, db_enc) in database.items():

        # Compute L2 distance between the target "encoding" and the current "emb" from the database. 
        dist = np.linalg.norm(encoding-db_enc)

        # If this distance is less than the min_dist, then set min_dist to dist, and identity to name.
        if dist<min_dist:
            min_dist = dist
            identity = name

    
    if min_dist > 0.7:
        print("Not in the database.")
    else:
        print ("it's " + str(identity) + ", the distance is " + str(min_dist))
        
    return min_dist, identity
  • Face verification solves an easier 1:1 matching problem; face recognition addresses a harder 1:K matching problem.
  • The triplet loss is an effective loss function for training a neural network to learn an encoding of a face image.
  • The same encoding can be used for verification and recognition. Measuring distances between two images' encodings allows you to determine whether they are pictures of the same person.
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容