Python气象数据处理与绘图(1):数据读取

1、NetCDF文件(***.nc)

python很多库支持了对nc格式文件的读取,比如NetCDF4,PyNio(PyNio和PyNgl可以看做是NCL的Python版本)以及Xarray等等。

我最初使用PyNio,但是由于NCL到Python的移植并不完全,导致目前远不如直接使用NCL方便,而在接触Xarray库后,发现其功能强大远超NCL(也可能是我NCL太菜的原因)。

安装同其它库一致:

conda install xarray

我这里以一套中国逐日最高温度格点资料(CN05.1)为例,其水平精度为0.5°X0.5°。

import xarray as xr
f_tmax = xr.open_dataset('CN05.1_Tmax_1961_2017_daily_05x05.nc')
image.png

可以看到,文件的坐标有时间, 经度,纬度,变量有日最高温
我们将最高温数据取出

tmax = f_tmax['tmax']
image.png

这与Linux系统中的ncl_filedump指令看到的信息是类似的
Xarray在读取坐标信息时,自动将时间坐标读取为了datetime64 格式,这对我们挑选目的时间十分方便。Xarray通常与pandas配合使用。
比如我们想选取1979.06.01-1979.06.20时期数据,我们只需

a = tmax.loc['1979-06-01':'1979-06-20']
image.png

再比如我们想选取夏季数据时,只需

a = tmax.loc[tmax.time.dt.season=='JJA']
image.png

更多的时间操作同python的datetime函数类似。
当我们想选取特定经纬度范围(高度)的数据时,.loc[]函数同样可以解决。
在这里,我选取了40°N-55°N,115°E-135°E范围的数据

a = tmax.loc[:,40:55,115:135]
image.png

甚至,我们还可以套娃,同时叠加时间和范围的选取

a = tmax.loc[:,40:55,115:135].loc[tmax.time.dt.season=='JJA']
image.png

这足够满足常用到的数据索引要求。

2、TXT(CSV...)

对于这类简单排列的.txt文件,可以通过np.load读取,用pandas的.read_csv更为方便


image.png
data = pd.read_csv("cslist.txt",sep=',',header=None, names=['a','b','c','d','e','f','g','h','i','j','k']) 

读取txt的同时,对每列赋予了一个列名,通过data.a可以直接按列名调用相应数据。
对于较复杂的.txt文件,仍可通过该函数读取


image.png
data1 = pd.read_csv("trajectories.txt",skiprows=5,sep='\s+',header=None)  

skiprows=5跳过了前5行的文件头,sep='\s+'定义了数据间隔为空格,这里用的是正则表达。
pd.read_csv函数有很多的参数,可以处理各种复杂情况下的文本文件读取。

3、Grib

grib文件可通过pygrib库读取
import pygrib
f = pygrib.open('xxx.grb')

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容