在造成数据中心瘫痪的原因中,以因供配电系统的产品选型和设计架构的”考虑欠妥”所诱发的电气瘫痪的危害性最大。相关的统计资料显示,它存在如下几种典型的故障隐患:
(1) 因UPS供电系统的产品或可用性级别的”选配欠妥”所诱发的故障占29%;
2) 因人为操作“失误”所诱发的故障占24%(例:2017年5月,因托管机房的工程师对UPS供配系统的输入开关执行”误关断”操作而致使某国外航空公司的几乎所有的IT设备进入”宕机瘫痪”的事故);
(3)因未考虑到发电机带电容性负载的带载能力会“变弱“以及因阶跃性负载的“负载突增量过大”等原因所诱发的发电机“自动关机”的故障占10%;
(4)因气候及自然灾害所诱发的故障占12%(例:2017年12月,国外某机场因电力电缆的火灾所造成的长达十余小时的大面积停电事故)。
显而易见,能否消除掉上述的、足以对供配电系统的安全运行造成“致命危害”的故障隐患是能否确保该数据中心机房能长期可靠地运行的关键所在,以便为在后期的机房的日常运维操作过程中,能够及时地发现和规避这些风险、确保它能获得令人满意的可用性(99.99%∽99.999%)奠定下坚实的技术基础。根据GB50174—2017数据中心设计规范的要求,对于负责向IT/网络等关键设备供电的供配电系统而言,它所允许的瞬间供电中断时间应小于10ms。
通过对近年来发生在数据中心供配电系统中的多起事故的分析发现:同工频机UPS供配电系统相比,导致传统高频机UPS和模块化UPS供配电系统的故障率增高的重要诱因是:因为它们的抗瞬态输入过压保护的能力“变差“所致。通过在用户现场所捕捉到的输入故障波形以及在所搭建的故障模拟平台上所检测到数据可见:因“输入瞬态过压”而致使传统高频机和模块化UPS的典型故障类型有:因电池组异常放电所诱发的电池组使用寿命缩短; 在UPS供配电系统的输出端发生输出闪断或“被损环”的事故。其故障高发期是:
[if !supportLists](a) [endif]当10KV高压因故发生停电/闪断事故时或位于这些UPS供电系统上游侧的大容量ATS开关因故需执行切换操作的瞬间。在此期间,在UPS的输入端出现“输入瞬态过压”故障的几率很高;
[if !supportLists](b) [endif]为降低生产成本和充分利用廉价电能(注:夜间谷期电价仅为白天峰期电价的1/3左右),高能耗企业可能会采用夜间生产、白天停工的生产管理体制。对于地处邻近高能耗企业的数据中心而言,极易在高能耗企业“突然抽闸”的瞬间,在它的市电输入电网上诱发出”瞬态输入高压”。在此条件下,易发生电池组异常放电故障,从而造成电池组使用寿命缩短,增加后期运维成本。