引入依赖
<dependency>
<groupId>com.google.protobuf</groupId>
<artifactId>protobuf-java</artifactId>
<version>1.10.0</version>
</dependency>
<dependency>
<groupId>org.tensorflow</groupId>
<artifactId>tensorflow</artifactId>
<version>1.13.1</version>
</dependency>
定一个一个类,用来保存转换后的 ByteString 和维度信息,因为 ByteString 本身是不包含数组的维度信息的,因此信息需要单独保存。
import com.google.protobuf.ByteString;
public class ByteStringWithDims {
//byteString
private ByteString byteString;
//原始数组的维度信息
private long[] dims;
public ByteStringWithDims(ByteString byteString, long[] dims) {
this.byteString = byteString;
this.dims = dims;
}
public ByteString getByteString() {
return byteString;
}
public long[] getDims() {
return dims;
}
}
如下的方法即可将输入的任意维度的基本类型的数组和 String 数组转成 ByteString:
/**
* 将输入的数组转换成 ByteString 并保存 dims 信息
* @param array
* @return
*/
public static ByteStringWithDims toByteString(Object array) {
try {
if(null == array) {
return null;
}
long[] dims = shape(array);
if(null == dims) {
return null;
}
//多维数组降成一维
if(dims.length > 1) {
array = toSingleArray(array, dims);
}
//获取数据类型
Class<?> type = Array.get(array, 0).getClass();
//将 string 转成 byte 数组
if(type.equals(String.class)) {
array = toByteArray((String[])array);
}
//利用 tensor 进行转换,提高速度
Tensor<?> tensor = Tensor.create(array, type);
ByteBuffer bb = ByteBuffer.allocate(tensor.numBytes());
tensor.writeTo(bb);
return new ByteStringWithDims(ByteString.copyFrom(bb.array()), dims);
} catch (Exception e) {
throw e;
}
}
如下的方法可以将 ByteString 转成指定形状,指定类型的数组:
/**
* 将输入的 byteString 转成 type 类型,维度为 dims 定义的数组
* @param byteString
* @param type
* @param dims
* @return
*/
public static Object byteString2Array(ByteString byteString, Class<?> type, long[] dims) {
try {
ByteBuffer byteBuffer = byteString.asReadOnlyByteBuffer();
Tensor<?> tensor = Tensor.create(type, dims, byteBuffer);
Method allocateMethod = BUFF_CLAZZ_MAP.get(type).getMethod("allocate", int.class);
Buffer buffer = (Buffer) allocateMethod.invoke(null, (String.class.equals(type)) ? tensor.numBytes() :tensor.numElements());
Method m = Tensor.class.getMethod("writeTo", BUFF_CLAZZ_MAP.get(type));
m.invoke(tensor, buffer);
return toMultiArray(buffer.array(), dims);
} catch (Exception e) {
throw new RuntimeException("read result form byte string failed", e);
}
}
完整的代码如下:
import java.lang.reflect.Array;
import java.lang.reflect.Method;
import java.nio.Buffer;
import java.nio.ByteBuffer;
import java.nio.DoubleBuffer;
import java.nio.FloatBuffer;
import java.nio.IntBuffer;
import java.nio.LongBuffer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Random;
import org.tensorflow.Tensor;
import com.google.protobuf.ByteString;
public class MultiArrayUtils {
/**
* 将输入的 byteString 转成 type 类型,维度为 dims 定义的数组
* @param byteString
* @param type
* @param dims
* @return
*/
public static Object byteString2Array(ByteString byteString, Class<?> type, long[] dims) {
try {
ByteBuffer byteBuffer = byteString.asReadOnlyByteBuffer();
Tensor<?> tensor = Tensor.create(type, dims, byteBuffer);
Method allocateMethod = BUFF_CLAZZ_MAP.get(type).getMethod("allocate", int.class);
Buffer buffer = (Buffer) allocateMethod.invoke(null, (String.class.equals(type)) ? tensor.numBytes() :tensor.numElements());
Method m = Tensor.class.getMethod("writeTo", BUFF_CLAZZ_MAP.get(type));
m.invoke(tensor, buffer);
return toMultiArray(buffer.array(), dims);
} catch (Exception e) {
throw new RuntimeException("read result form byte string failed", e);
}
}
/**
* 将输入的数组转换成 ByteString 并保存 dims 信息
* @param array
* @return
*/
public static ByteStringWithDims toByteString(Object array) {
try {
if(null == array) {
return null;
}
long[] dims = shape(array);
if(null == dims) {
return null;
}
//多维数组降成一维
if(dims.length > 1) {
array = toSingleArray(array, dims);
}
//获取数据类型
Class<?> type = Array.get(array, 0).getClass();
//将 string 转成 byte 数组
if(type.equals(String.class)) {
array = toByteArray((String[])array);
}
//利用 tensor 进行转换,提高速度
Tensor<?> tensor = Tensor.create(array, type);
ByteBuffer bb = ByteBuffer.allocate(tensor.numBytes());
tensor.writeTo(bb);
return new ByteStringWithDims(ByteString.copyFrom(bb.array()), dims);
} catch (Exception e) {
throw e;
}
}
/**
* String 数组转成二维的 byte 数组
* @param array
* @return
*/
private static Object toByteArray(String[] array) {
byte[][] ret = new byte[array.length][];
for(int i = 0; i < array.length; i++) {
if(null != array[i]) {
ret[i] = array[i].getBytes();
}
}
return ret;
}
/**
* 多维数组的字符串
* @param array
* @return
*/
public static String toString(Object array) {
if(!array.getClass().isArray()) {
return array.toString();
}
long length = getArrayLength(array);
StringBuffer buf = new StringBuffer();
buf.append('[');
for(int i = 0; i < length; i++) {
buf.append(toString(Array.get(array, i)));
buf.append(',');
}
buf.deleteCharAt(buf.length() - 1).append(']');
return buf.toString();
}
/**
* 产生一个随机数组
* @param dims
* @return
*/
public static Object randomFloatArray(long[] dims) {
Random r = new Random();
Object ret = Array.newInstance(float.class, longArray2intArray(dims));
MultiPoint points = new MultiPoint(dims);
while(points.hasNext()) {
long[] index = points.next();
Object tmp = ret;
for(int i = 0; i < index.length - 1; i++) {
tmp = Array.get(tmp, (int) index[i]);
}
Array.set(tmp, (int) index[index.length - 1], (float)r.nextInt(10));
}
return ret;
}
/**
* 产生一个随机数组
* @param dims
* @return
*/
public static Object randomIntegerArray(long[] dims) {
Random r = new Random();
Object ret = Array.newInstance(int.class, longArray2intArray(dims));
MultiPoint points = new MultiPoint(dims);
while(points.hasNext()) {
long[] index = points.next();
Object tmp = ret;
for(int i = 0; i < index.length - 1; i++) {
tmp = Array.get(tmp, (int) index[i]);
}
Array.set(tmp, (int) index[index.length - 1], r.nextInt(10));
}
return ret;
}
/**
* 将一维数组转成多维数组
* @param result
* @param dims
* @return
*/
private static Object toMultiArray(Object result, long[] dims) {
if(null == result || dims.length == 0 || dims.length == 1 || !result.getClass().isArray()) {
return result;
}
Object ret = Array.newInstance(result.getClass().getComponentType(), longArray2intArray(dims));
MultiPoint point = new MultiPoint(dims);
long length = getArrayLength(result);
if(length != point.getMaxEleNum()) {
throw new IndexOutOfBoundsException("result size: " + length + ", not match dims: " + Arrays.toString(dims));
}
int resultIndex = 0;
while(point.hasNext()) {
long[] index = point.next();
Object tmp = ret;
for(int i = 0; i < index.length - 1; i++) {
tmp = Array.get(tmp, (int) index[i]);
}
Array.set(tmp, (int) index[index.length - 1], Array.get(result, resultIndex));
resultIndex++;
}
return ret;
}
/**
* 将高维数组降成一维数组
* @param array
* @param dims
* @return
*/
private static Object toSingleArray(Object array, long[] dims) {
MultiPoint tp = new MultiPoint(dims);
Object sample = array;
for(int i = 0; i < dims.length - 1; i++) {
sample = Array.get(sample, 0);
}
Object newArray = Array.newInstance(sample.getClass().getComponentType(), (int) tp.getMaxEleNum());
int index = 0;
while(tp.hasNext()) {
long[] point = tp.next();
Object tmp = array;
for(long p : point) {
tmp = Array.get(tmp, (int)p);
}
Array.set(newArray, index, tmp);
index++;
}
return newArray;
}
/**
* 获取输入的多维数据的维度
* @param array
* @return
*/
private static long[] shape(Object array) {
long length = getArrayLength(array);
if(length <= 0) {
return null;
}
List<Long> tmp = new ArrayList<>();
while(length > 0) {
tmp.add((long) length);
array = Array.get(array, 0);
length = getArrayLength(array);
}
long[] ret = new long[tmp.size()];
for(int i = 0; i < ret.length; i++) {
ret[i] = tmp.get(i);
}
return ret;
}
/**
* 获取数组的长度
* @param obj
* @return
*/
private static long getArrayLength(Object obj) {
if(obj == null || !obj.getClass().isArray()) {
return -1;
}
return Array.getLength(obj);
}
/**
* long[] 转 int[]
* @param dims
* @return
*/
private static int[] longArray2intArray(long[] dims) {
int[] ret = new int[dims.length];
for(int i = 0; i < dims.length; i++) {
ret[i] = (int) dims[i];
}
return ret;
}
private final static Map<Class<?>, Class<? extends Buffer>> BUFF_CLAZZ_MAP = new HashMap<>();
static {
BUFF_CLAZZ_MAP.put(Float.class, FloatBuffer.class);
BUFF_CLAZZ_MAP.put(Double.class, DoubleBuffer.class);
BUFF_CLAZZ_MAP.put(Integer.class, IntBuffer.class);
BUFF_CLAZZ_MAP.put(Long.class, LongBuffer.class);
BUFF_CLAZZ_MAP.put(String.class, ByteBuffer.class);
}
}