gcforest的官方代码详解

本文采用的是v1.1版本,github地址https://github.com/kingfengji/gcForest
代码主要分为两部分:examples文件夹下是主代码.py和配置文件.json;libs文件夹下是代码中用到的库

主代码的实现

from gcforest.gcforest import GCForest
gc = GCForest(config) # should be a dict
X_train_enc = gc.fit_transform(X_train, y_train)
y_pred = gc.predict(X_test)

lib库的详解

gcforest.py 整个框架的实现
fgnet.py 多粒度部分,FineGrained的实现
cascade/cascade_classifier 级联分类器的实现
datasets/.... 包含一系列数据集的定义
estimator/... 包含决策树在进行评估用到的函数(多种分类器的预估)
layer/... 包含不同的层操作,如连接、池化、滑窗等
utils/.. 包含各种功能函数,譬如计算准确率、win_vote、win_avg、get_windows等

json配置文件的详解

参数介绍

  • max_depth: 决策树最大深度。默认为"None",决策树在建立子树的时候不会限制子树的深度这样建树时,会使每一个叶节点只有一个类别,或是达到min_samples_split。一般来说,数据少或者特征少的时候可以不管这个值。如果模型样本量多,特征也多的情况下,推荐限制这个最大深度,具体的取值取决于数据的分布。常用的可以取值10-100之间。
  • estimators表示选择的分类器
  • n_estimators 为森林里的树的数量
  • n_jobs: int (default=1)
    The number of jobs to run in parallel for any Random Forest fit and predict.
    If -1, then the number of jobs is set to the number of cores.

训练的配置,分三类情况:

  1. 采用默认的模型
def get_toy_config():
    config = {}
    ca_config = {}
    ca_config["random_state"] = 0  # 0 or 1
    ca_config["max_layers"] = 100  #最大的层数,layer对应论文中的level
    ca_config["early_stopping_rounds"] = 3  #如果出现某层的三层以内的准确率都没有提升,层中止
    ca_config["n_classes"] = 3      #判别的类别数量
    ca_config["estimators"] = []  
    ca_config["estimators"].append(
            {"n_folds": 5, "type": "XGBClassifier", "n_estimators": 10, "max_depth": 5,
             "objective": "multi:softprob", "silent": True, "nthread": -1, "learning_rate": 0.1} )
    ca_config["estimators"].append({"n_folds": 5, "type": "RandomForestClassifier", "n_estimators": 10, "max_depth": None, "n_jobs": -1})
    ca_config["estimators"].append({"n_folds": 5, "type": "ExtraTreesClassifier", "n_estimators": 10, "max_depth": None, "n_jobs": -1})
    ca_config["estimators"].append({"n_folds": 5, "type": "LogisticRegression"})
    config["cascade"] = ca_config    #共使用了四个基学习器
    return config

支持的基本分类器:
RandomForestClassifier
XGBClassifier
ExtraTreesClassifier
LogisticRegression
SGDClassifier

你可以通过下述方式手动添加任何分类器:

lib/gcforest/estimators/__init__.py
  1. 只有级联(cascade)部分
{
"cascade": {
    "random_state": 0,
    "max_layers": 100,
    "early_stopping_rounds": 3,
    "n_classes": 10,
    "estimators": [
        {"n_folds":5,"type":"XGBClassifier","n_estimators":10,"max_depth":5,"objective":"multi:softprob", "silent":true, "nthread":-1, "learning_rate":0.1},
        {"n_folds":5,"type":"RandomForestClassifier","n_estimators":10,"max_depth":null,"n_jobs":-1},
        {"n_folds":5,"type":"ExtraTreesClassifier","n_estimators":10,"max_depth":null,"n_jobs":-1},
        {"n_folds":5,"type":"LogisticRegression"}
    ]
}
}
  1. “multi fine-grained + cascade” 两部分
    滑动窗口的大小: {[d/16], [d/8], [d/4]},d代表输入特征的数量;
    "look_indexs_cycle": [
    [0, 1],
    [2, 3],
    [4, 5]]
    代表级联多粒度的方式,第一层级联0、1森林的输出,第二层级联2、3森林的输出,第三层级联4、5森林的输出
{
"net":{
"outputs": ["pool1/7x7/ets", "pool1/7x7/rf", "pool1/10x10/ets", "pool1/10x10/rf", "pool1/13x13/ets", "pool1/13x13/rf"],
"layers":[
// win1/7x7
    {
        "type":"FGWinLayer",
        "name":"win1/7x7",
        "bottoms": ["X","y"],
        "tops":["win1/7x7/ets", "win1/7x7/rf"],
        "n_classes": 10,
        "estimators": [
            {"n_folds":3,"type":"ExtraTreesClassifier","n_estimators":20,"max_depth":10,"n_jobs":-1,"min_samples_leaf":10},
            {"n_folds":3,"type":"RandomForestClassifier","n_estimators":20,"max_depth":10,"n_jobs":-1,"min_samples_leaf":10}
        ],
        "stride_x": 2,
        "stride_y": 2,
        "win_x":7,
        "win_y":7
    },
// win1/10x10
    {
        "type":"FGWinLayer",
        "name":"win1/10x10",
        "bottoms": ["X","y"],
        "tops":["win1/10x10/ets", "win1/10x10/rf"],
        "n_classes": 10,
        "estimators": [
            {"n_folds":3,"type":"ExtraTreesClassifier","n_estimators":20,"max_depth":10,"n_jobs":-1,"min_samples_leaf":10},
            {"n_folds":3,"type":"RandomForestClassifier","n_estimators":20,"max_depth":10,"n_jobs":-1,"min_samples_leaf":10}
        ],
        "stride_x": 2,
        "stride_y": 2,
        "win_x":10,
        "win_y":10
    },
// win1/13x13
    {
        "type":"FGWinLayer",
        "name":"win1/13x13",
        "bottoms": ["X","y"],
        "tops":["win1/13x13/ets", "win1/13x13/rf"],
        "n_classes": 10,
        "estimators": [
            {"n_folds":3,"type":"ExtraTreesClassifier","n_estimators":20,"max_depth":10,"n_jobs":-1,"min_samples_leaf":10},
            {"n_folds":3,"type":"RandomForestClassifier","n_estimators":20,"max_depth":10,"n_jobs":-1,"min_samples_leaf":10}
        ],
        "stride_x": 2,
        "stride_y": 2,
        "win_x":13,
        "win_y":13
    },
// pool1
    {
        "type":"FGPoolLayer",
        "name":"pool1",
        "bottoms": ["win1/7x7/ets", "win1/7x7/rf", "win1/10x10/ets", "win1/10x10/rf", "win1/13x13/ets", "win1/13x13/rf"],
        "tops": ["pool1/7x7/ets", "pool1/7x7/rf", "pool1/10x10/ets", "pool1/10x10/rf", "pool1/13x13/ets", "pool1/13x13/rf"],
        "pool_method": "avg",
        "win_x":2,
        "win_y":2
    }
]

},

"cascade": {
    "random_state": 0,
    "max_layers": 100,
    "early_stopping_rounds": 3,
    "look_indexs_cycle": [
        [0, 1],
        [2, 3],
        [4, 5]
    ],
    "n_classes": 10,
    "estimators": [
        {"n_folds":5,"type":"ExtraTreesClassifier","n_estimators":1000,"max_depth":null,"n_jobs":-1},
        {"n_folds":5,"type":"RandomForestClassifier","n_estimators":1000,"max_depth":null,"n_jobs":-1}
    ]
}
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,599评论 18 139
  • 本文是sklearn官网文档中集成模型一文的翻译,加入了自己的理解,翻译中难免有误,仅作参考。 集成学习的目标是结...
    迅速傅里叶变换阅读 7,946评论 0 7
  • 假期即将结束,宅在家里不修边幅的样子必须修正了。修剪头发,保养面容,服饰搭配,从内在到外部让自己美美的。 ...
    晚起画蛾眉阅读 379评论 0 0
  • 来一桶跑步心得分享:突破! 【安逸的人生,谁不想拥有。只是,这种安逸,应该是人生的终极目标,而不是年轻时逃避艰辛的...
    贺小桶阅读 265评论 0 1
  • 【60天月度檢視】 梁艳容,第一组 #基本情況# 姓名:郭俊言 年齡:7歲 小組:第1組 #第二階段60天目標及完...
    郭师奶容阅读 205评论 0 0