线程与进程
线程:进程中负责程序执行的执行单元
线程本身依靠程序进行运行
线程是程序中的顺序控制流,只能使用分配给程序的资源和环境
进程:执行中的程序
一个进程至少包含一个线程
单线程:程序中只存在一个线程,实际上主方法就是一个主线程
多线程:在一个程序中运行多个任务
目的是更好地使用CPU资源
线程的实现
继承Thread类
在java.lang
包中定义, 继承Thread类必须重写run()
方法
class MyThread extends Thread{
private static int num = 0;
public MyThread(){
num++;
}
@Override
public void run() {
System.out.println("主动创建的第"+num+"个线程");
}
}
创建好了自己的线程类之后,就可以创建线程对象了,然后通过start()方法去启动线程。注意,不是调用run()方法启动线程,run方法中只是定义需要执行的任务,如果调用run方法,即相当于在主线程中执行run方法,跟普通的方法调用没有任何区别,此时并不会创建一个新的线程来执行定义的任务。
public class Test {
public static void main(String[] args) {
MyThread thread = new MyThread();
thread.start();
}
}
class MyThread extends Thread{
private static int num = 0;
public MyThread(){
num++;
}
@Override
public void run() {
System.out.println("主动创建的第"+num+"个线程");
}
}
在上面代码中,通过调用start()方法,就会创建一个新的线程了。为了分清start()方法调用和run()方法调用的区别,请看下面一个例子:
public class Test {
public static void main(String[] args) {
System.out.println("主线程ID:"+Thread.currentThread().getId());
MyThread thread1 = new MyThread("thread1");
thread1.start();
MyThread thread2 = new MyThread("thread2");
thread2.run();
}
}
class MyThread extends Thread{
private String name;
public MyThread(String name){
this.name = name;
}
@Override
public void run() {
System.out.println("name:"+name+" 子线程ID:"+Thread.currentThread().getId());
}
}
运行结果:
从输出结果可以得出以下结论:
1)thread1和thread2的线程ID不同,thread2和主线程ID相同,
说明通过run方法调用并不会创建新的线程,而是在主线程中直接运行run方法,跟普通的方法调用没有任何区别
;2)虽然thread1的start方法调用在thread2的run方法前面调用,但是先输出的是thread2的run方法调用的相关信息,说明
新线程创建的过程不会阻塞主线程的后续执行
。
实现Runnable接口
在Java中创建线程除了继承Thread类之外,还可以通过实现Runnable接口来实现类似的功能。实现Runnable接口必须重写其run方法。
下面是一个例子:
public class Test {
public static void main(String[] args) {
System.out.println("主线程ID:"+Thread.currentThread().getId());
MyRunnable runnable = new MyRunnable();
Thread thread = new Thread(runnable);
thread.start();
}
}
class MyRunnable implements Runnable{
public MyRunnable() {
}
@Override
public void run() {
System.out.println("子线程ID:"+Thread.currentThread().getId());
}
}
Runnable的中文意思是“任务”,顾名思义,通过实现Runnable接口,我们定义了一个子任务,然后将子任务交由Thread去执行。注意,这种方式必须将Runnable作为Thread类的参数,然后通过Thread的start方法来创建一个新线程来执行该子任务。如果调用Runnable的run方法的话,是不会创建新线程的,这根普通的方法调用没有任何区别。
事实上,查看Thread类的实现源代码会发现Thread类是实现了Runnable接口的。
在Java中,这2种方式都可以用来创建线程去执行子任务,具体选择哪一种方式要看自己的需求。直接继承Thread类的话,可能比实现Runnable接口看起来更加简洁,但是由于Java只允许单继承,所以如果自定义类需要继承其他类,则只能选择实现Runnable接口。
使用ExecutorService、Callable、Future实现有返回结果的多线程
ExecutorService、Callable、Future这个对象实际上都是属于Executor框架中的功能类。想要详细了解Executor框架的可以访问http://www.javaeye.com/topic/366591 ,这里面对该框架做了很详细的解释。返回结果的线程是在JDK1.5中引入的新特征,确实很实用,有了这种特征我就不需要再为了得到返回值而大费周折了,而且即便实现了也可能漏洞百出。
可返回值的任务必须实现Callable接口,类似的,无返回值的任务必须Runnable接口。执行Callable任务后,可以获取一个Future的对象,在该对象上调用get就可以获取到Callable任务返回的Object了,再结合线程池接口ExecutorService就可以实现传说中有返回结果的多线程了。下面提供了一个完整的有返回结果的多线程测试例子,在JDK1.5下验证过没问题可以直接使用。代码如下:
/**
* 有返回值的线程
*/
@SuppressWarnings("unchecked")
public class Test {
public static void main(String[] args) throws ExecutionException,
InterruptedException {
System.out.println("----程序开始运行----");
Date date1 = new Date();
int taskSize = 5;
// 创建一个线程池
ExecutorService pool = Executors.newFixedThreadPool(taskSize);
// 创建多个有返回值的任务
List<Future> list = new ArrayList<Future>();
for (int i = 0; i < taskSize; i++) {
Callable c = new MyCallable(i + " ");
// 执行任务并获取Future对象
Future f = pool.submit(c);
// System.out.println(">>>" + f.get().toString());
list.add(f);
}
// 关闭线程池
pool.shutdown();
// 获取所有并发任务的运行结果
for (Future f : list) {
// 从Future对象上获取任务的返回值,并输出到控制台
System.out.println(">>>" + f.get().toString());
}
Date date2 = new Date();
System.out.println("----程序结束运行----,程序运行时间【"
+ (date2.getTime() - date1.getTime()) + "毫秒】");
}
}
class MyCallable implements Callable<Object> {
private String taskNum;
MyCallable(String taskNum) {
this.taskNum = taskNum;
}
public Object call() throws Exception {
System.out.println(">>>" + taskNum + "任务启动");
Date dateTmp1 = new Date();
Thread.sleep(1000);
Date dateTmp2 = new Date();
long time = dateTmp2.getTime() - dateTmp1.getTime();
System.out.println(">>>" + taskNum + "任务终止");
return taskNum + "任务返回运行结果,当前任务时间【" + time + "毫秒】";
}
}
代码说明:
上述代码中Executors类,提供了一系列工厂方法用于创先线程池,返回的线程池都实现了ExecutorService接口。
public static ExecutorService newFixedThreadPool(int nThreads)
创建固定数目线程的线程池。
public static ExecutorService newCachedThreadPool()
创建一个可缓存的线程池,调用execute 将重用以前构造的线程(如果线程可用)。如果现有线程没有可用的,则创建一个新线程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。
public static ExecutorService newSingleThreadExecutor()
创建一个单线程化的Executor。
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize)
创建一个支持定时及周期性的任务执行的线程池,多数情况下可用来替代Timer类。
ExecutoreService提供了submit()方法,传递一个Callable,或Runnable,返回Future。如果Executor后台线程池还没有完成Callable的计算,这调用返回Future对象的get()方法,会阻塞直到计算完成。
线程的状态
在正式学习Thread类中的具体方法之前,我们先来了解一下线程有哪些状态,这个将会有助于后面对Thread类中的方法的理解。
创建(new)状态: 准备好了一个多线程的对象
就绪(runnable)状态: 调用了
start()
方法, 等待CPU进行调度运行(running)状态: 执行
run()
方法阻塞(blocked)状态: 暂时停止执行, 可能将资源交给其它线程使用
终止(dead)状态: 线程销毁
当需要新起一个线程来执行某个子任务时,就创建了一个线程。但是线程创建之后,不会立即进入就绪状态,因为线程的运行需要一些条件(比如内存资源,在前面的JVM内存区域划分一篇博文中知道程序计数器、Java栈、本地方法栈都是线程私有的,所以需要为线程分配一定的内存空间),只有线程运行需要的所有条件满足了,才进入就绪状态。
当线程进入就绪状态后,不代表立刻就能获取CPU执行时间,也许此时CPU正在执行其他的事情,因此它要等待。当得到CPU执行时间之后,线程便真正进入运行状态。
线程在运行状态过程中,可能有多个原因导致当前线程不继续运行下去,比如用户主动让线程睡眠(睡眠一定的时间之后再重新执行)、用户主动让线程等待,或者被同步块给阻塞,此时就对应着多个状态:time waiting(睡眠或等待一定的事件)、waiting(等待被唤醒)、blocked(阻塞)。
当由于突然中断或者子任务执行完毕,线程就会被消亡。
下面这副图描述了线程从创建到消亡之间的状态:
在有些教程上将blocked、waiting、time waiting统称为阻塞状态,这个也是可以的,只不过这里我想将线程的状态和Java中的方法调用联系起来,所以将waiting和time waiting两个状态分离出来。
注:sleep和wait的区别:
sleep
是Thread
类的方法,wait
是Object
类中定义的方法.
Thread.sleep
不会导致锁行为的改变, 如果当前线程是拥有锁的, 那么Thread.sleep
不会让线程释放锁.
Thread.sleep
和Object.wait
都会暂停当前的线程. OS会将执行时间分配给其它线程. 区别是, 调用wait
后, 需要别的线程执行notify/notifyAll
才能够重新获得CPU执行时间.
上下文切换
对于单核CPU来说(对于多核CPU,此处就理解为一个核),CPU在一个时刻只能运行一个线程,当在运行一个线程的过程中转去运行另外一个线程,这个叫做线程上下文切换(对于进程也是类似)。
由于可能当前线程的任务并没有执行完毕,所以在切换时需要保存线程的运行状态,以便下次重新切换回来时能够继续切换之前的状态运行。举个简单的例子:比如一个线程A正在读取一个文件的内容,正读到文件的一半,此时需要暂停线程A,转去执行线程B,当再次切换回来执行线程A的时候,我们不希望线程A又从文件的开头来读取。
因此需要记录线程A的运行状态,那么会记录哪些数据呢?因为下次恢复时需要知道在这之前当前线程已经执行到哪条指令了,所以需要记录程序计数器的值,另外比如说线程正在进行某个计算的时候被挂起了,那么下次继续执行的时候需要知道之前挂起时变量的值时多少,因此需要记录CPU寄存器的状态。所以一般来说,线程上下文切换过程中会记录程序计数器、CPU寄存器状态等数据。
说简单点的:对于线程的上下文切换实际上就是 存储和恢复CPU状态的过程,它使得线程执行能够从中断点恢复执行。
虽然多线程可以使得任务执行的效率得到提升,但是由于在线程切换时同样会带来一定的开销代价,并且多个线程会导致系统资源占用的增加,所以在进行多线程编程时要注意这些因素。
在Android平台里,UI线程与其子线程之分工是很明确的:
- 子线程负责执行费时的工作。
- 主线程负责UI的操作或事件;子线程不可以插手有关UI的事。
在同一进程里的主、子线程之间可以透过MessageQueue来互相沟通。当一个新进程新诞生时,会同时诞生一个主线程,也替主线程建立一个MessageQueue,以及负责管理MessageQueue的Looper类别之对象。子线程可以透过Handler对象而将Message对象丢(Post)到主线程的MessageQueue里,而主线程的Looper对象就会接到这个Message对象,并依据其内容而呼叫适当的函数来处理。