Spark整合HBase(自定义HBase DataSource)

背景

Spark支持多种数据源,但是Spark对HBase 的读写都没有相对优雅的api,但spark和HBase整合的场景又比较多,故通过spark的DataSource API自己实现了一套比较方便操作HBase的API。

写 HBase

写HBase会根据Dataframe的schema写入对应数据类型的数据到Hbase,先上使用示例:

import spark.implicits._
import org.apache.hack.spark._
val df = spark.createDataset(Seq(("ufo",  "play"), ("yy",  ""))).toDF("name", "like")
// 方式一
val options = Map(
            "hbase.table.rowkey.field" -> "name",
            "hbase.table.numReg" -> "12",
            "hbase.table.rowkey.prefix" -> "00",
            "bulkload.enable" -> "false"
        )
df.saveToHbase("hbase_table", Some("XXX:2181"), options)
// 方式二
df1.write.format("org.apache.spark.sql.execution.datasources.hbase")
            .options(Map(
                "hbase.table.rowkey.field" -> "name",
                "hbase.table.name" -> "hbase_table",
                "hbase.zookeeper.quorum" -> "XXX:2181",
                "hbase.table.rowkey.prefix" -> "00",
                "hbase.table.numReg" -> "12",
                "bulkload.enable" -> "false"
            )).save()

上面两种方式实现的效果是一样的,下面解释一下每个参数的含义:

  • hbase.zookeeper.quorum:zookeeper地址
  • hbase.table.rowkey.field:spark临时表的哪个字段作为hbase的rowkey,默认第一个字段
  • bulkload.enable:是否启动bulkload,默认不启动,当要插入的hbase表只有一列rowkey时,必需启动
  • hbase.table.name:Hbase表名
  • hbase.table.family:列族名,默认info
  • hbase.table.startKey:预分区开始key,当hbase表不存在时,会自动创建Hbase表,不带一下三个参数则只有一个分区
  • hbase.table.endKey:预分区开始key
  • hbase.table.numReg:分区个数
  • hbase.table.rowkey.prefix: 当rowkey是数字开头,预分区需要指明前缀的formate形式,如 00
  • hbase.check_table: 写入hbase表时,是否需要检查表是否存在,默认 false

读 HBase

示例代码如下:

// 方式一
import org.apache.hack.spark._
 val options = Map(
    "spark.table.schema" -> "appid:String,appstoreid:int,firm:String",
    "hbase.table.schema" -> ":rowkey,info:appStoreId,info:firm"
)
spark.hbaseTableAsDataFrame("hbase_table", Some("XXX:2181")).show(false)
// 方式二
spark.read.format("org.apache.spark.sql.execution.datasources.hbase").
            options(Map(
            "spark.table.schema" -> "appid:String,appstoreid:int,firm:String",
            "hbase.table.schema" -> ":rowkey,info:appStoreId,info:firm",
            "hbase.zookeeper.quorum" -> "XXX:2181",
            "hbase.table.name" -> "hbase_table"
        )).load.show(false)  

spark和hbase表的schema映射关系指定不是必须的,默认会生成rowkey和content两个字段,content是由所有字段组成的json字符串,可通过field.type.fieldname对单个字段设置数据类型,默认都是StringType。这样映射出来还得通过spark程序转一下才是你想要的样子,而且所有字段都会去扫描,相对来说不是特别高效。

故我们可自定义schema映射来获取数据:

  • hbase.zookeeper.quorum:zookeeper地址
  • spark.table.schema:Spark临时表对应的schema eg: "ID:String,appname:String,age:Int"
  • hbase.table.schema:Hbase表对应schema eg: ":rowkey,info:appname,info:age"
  • hbase.table.name:Hbase表名
  • spark.rowkey.view.name:rowkey对应的dataframe创建的tempview名(设置了该值后,只获取rowkey对应的数据)

注意这两个schema是一一对应的,Hbase只会扫描hbase.table.schema对应的列。

源码在我的 GitHub,欢迎star

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容