0、准备知识
超线程技术(Hyper-Threading):就是利用特殊的硬件指令,把两个逻辑内核(CPU core)模拟成两个物理芯片,
让单个处理器都能使用线程级并行计算,进而兼容多线程操作系统和软件,减少了CPU的闲置时间,提高的CPU的运行效率。
我们常听到的双核四线程/四核八线程指的就是支持超线程技术的CPU.
物理CPU:机器上安装的实际CPU, 比如说你的主板上安装了一个8核CPU,那么物理CPU个数就是1个,所以物理CPU个数就是主板上安装的CPU个数。
逻辑CPU:一般情况,我们认为一颗CPU可以有多核,加上intel的超线程技术(HT), 可以在逻辑上再分一倍数量的CPU core出来;
逻辑CPU数量 = 物理CPU数量 x CPU cores x 2(如果支持并开启HT)//前提是CPU的型号一致,如果不一致只能一个一个的加起来,不用直接乘以物理CPU数量//比如你的电脑安装了一块4核CPU,并且支持且开启了超线程(HT)技术,那么逻辑CPU数量 = 1 × 4 × 2 = 8
Linux下查看CPU相关信息, CPU的信息主要都在/proc/cupinfo中,
# 查看物理CPU个数cat/proc/cpuinfo|grep"physical id"|sort-u|wc-l# 查看每个物理CPU中core的个数(即核数)cat/proc/cpuinfo|grep"cpu cores"|uniq# 查看逻辑CPU的个数cat/proc/cpuinfo|grep"processor"|wc-l# 查看CPU的名称型号cat/proc/cpuinfo|grep "name"|cut-f2 -d:|uniq
Linux查看某个进程运行在哪个逻辑CPU上
ps-eo pid,args,psr
#参数的含义:
pid - 进程ID
args - 该进程执行时传入的命令行参数
psr - 分配给进程的逻辑CPU
例子:
[~]#ps-eo pid,args,psr |grepnginx
9073 nginx: master process /usr/ 1
9074 nginx: worker process 0
9075 nginx: worker process 1
9076 nginx: worker process 2
9077 nginx: worker process 3
13857 grep nginx 3
Linux查看线程的TID
TID就是Thread ID,他和POSIX中pthread_t表示的线程ID完全不是同一个东西.
Linux中的POSIX线程库实现的线程其实也是一个轻量级进程(LWP),这个TID就是这个线程的真实PID.
但是又不能通过getpid()函数获取,Linux中定义了gettid()这个接口,但是通常都是未实现的,所以需要使用下面的方式获取TID。
//program#include
pid_t tid;
tid = syscall(__NR_gettid);// or syscall(SYS_gettid) //command-line 3种方法(推荐第三种方法)(1)ps -efL | grep prog_name
(2)ls /proc/pid/task//文件夹名即TID
(3)ps -To 'pid,lwp,psr,cmd' -p PID
1、CPU亲和性(亲和力)
1.1 基本概念
CPU affinity 是一种调度属性(scheduler property), 它可以将一个进程"绑定" 到一个或一组CPU上.
在SMP(Symmetric Multi-Processing对称多处理)架构下,Linux调度器(scheduler)会根据CPU affinity的设置让指定的进程运行在"绑定"的CPU上,而不会在别的CPU上运行.
Linux调度器同样支持自然CPU亲和性(natural CPU affinity): 调度器会试图保持进程在相同的CPU上运行, 这意味着进程通常不会在处理器之间频繁迁移,进程迁移的频率小就意味着产生的负载小。
因为程序的作者比调度器更了解程序,所以我们可以手动地为其分配CPU核,而不会过多地占用CPU0,或是让我们关键进程和一堆别的进程挤在一起,所有设置CPU亲和性可以使某些程序提高性能。
1.2 表示方法
CPU affinity 使用位掩码(bitmask)表示, 每一位都表示一个CPU, 置1表示"绑定".
最低位表示第一个逻辑CPU, 最高位表示最后一个逻辑CPU.
CPU affinity典型的表示方法是使用16进制,具体如下.
0x00000001 is processor #00x00000003 is processors #0 and #10xFFFFFFFF is all processors (#0 through #31)
2、taskset命令
taskset命名用于获取或者设定CPU亲和性.
# 命令行形式taskset[options] mask command [arg]...
taskset[options]-p[mask] pid
PARAMETER
mask : cpu亲和性,当没有-c选项时, 其值前无论有没有0x标记都是16进制的,
当有-c选项时,其值是十进制的.
command : 命令或者可执行程序arg : command的参数
pid : 进程ID,可以通过ps/top/pidof等命令获取
OPTIONS
-a, --all-tasks (旧版本中没有这个选项)
这个选项涉及到了linux中TID的概念,他会将一个进程中所有的TID都执行一次CPU亲和性设置.
TID就是Thread ID,他和POSIX中pthread_t表示的线程ID完全不是同一个东西.
Linux中的POSIX线程库实现的线程其实也是一个进程(LWP),这个TID就是这个线程的真实PID. -p, --pid 操作已存在的PID,而不是加载一个新的程序 -c, --cpu-list 声明CPU的亲和力使用数字表示而不是用位掩码表示. 例如 0,5,7,9-11. -h, --help display usage information and exit -V, --version output version information and exit
USAGE
1) 使用指定的CPU亲和性运行一个新程序
taskset [-c] mask command [arg]...
举例:使用CPU0运行ls命令显示/etc/init.d下的所有内容
taskset -c 0 ls -al /etc/init.d/
2) 显示已经运行的进程的CPU亲和性
taskset -p pid
举例:查看init进程(PID=1)的CPU亲和性
taskset -p 1
3) 改变已经运行进程的CPU亲和力
taskset -p[c] mask pid
举例:打开2个终端,在第一个终端运行top命令,第二个终端中
首先运行:[~]#ps -eo pid,args,psr | grep top#获取top命令的pid和其所运行的CPU号
其次运行:[~]#taskset -cp 新的CPU号 pid #更改top命令运行的CPU号
最后运行:[~]#ps -eo pid,args,psr | grep top#查看是否更改成功
PERMISSIONS
一个用户要设定一个进程的CPU亲和性,如果目标进程是该用户的,则可以设置,如果是其他用户的,则会设置失败,提示 Operation not permitted.当然root用户没有任何限制.
任何用户都可以获取任意一个进程的CPU亲和性.
taskset命令其实就是使用sched_getaffinity()和sched_setaffinity()接口实现的,相信看完了第3节你也能自己实现一个taskset命令.
有兴趣的可以看一下其源代码:ftp://ftp.kernel.org/pub/linux/utils/util-linux/vX.YZ/util-linux-X.YZ-xxx.tar.gz /schedutils/taskset.c
3、编程API
下面是用用于设置和获取CPU亲和性相关的API.
#define_GNU_SOURCE#include #include //for pthread functions(last 4)注意<pthread.h>包含<sched.h>/* MACRO *//* The following macros are provided to operate on the CPU set set *//* Clears set, so that it contains no CPUs */voidCPU_ZERO(cpu_set_t *set);
voidCPU_ZERO_S(size_t setsize, cpu_set_t *set);
/* Add CPU cpu to set */voidCPU_SET(intcpu, cpu_set_t *set);
voidCPU_SET_S(intcpu, size_t setsize, cpu_set_t *set);
/* Remove CPU cpu from set */voidCPU_CLR(intcpu, cpu_set_t *set);
voidCPU_CLR_S(intcpu, size_t setsize, cpu_set_t *set);
/* Test to see if CPU cpu is a member of set */intCPU_ISSET(intcpu, cpu_set_t *set);
intCPU_ISSET_S(intcpu, size_t setsize, cpu_set_t *set);
/* Return the number of CPUs in set */voidCPU_COUNT(cpu_set_t *set);
voidCPU_COUNT_S(size_t setsize, cpu_set_t *set);
/* The following macros perform logical operations on CPU sets *//* Store the logical AND of the sets srcset1 and srcset2 in destset (which may be one of the source sets). */voidCPU_AND(cpu_set_t *destset, cpu_set_t *srcset1, cpu_set_t *srcset2);
voidCPU_AND_S(size_t setsize, cpu_set_t *destset, cpu_set_t *srcset1, cpu_set_t *srcset2);
/* Store the logical OR of the sets srcset1 and srcset2 in destset (which may be one of the source sets). */voidCPU_OR(cpu_set_t *destset, cpu_set_t *srcset1, cpu_set_t *srcset2);
voidCPU_OR_S(size_t setsize, cpu_set_t *destset, cpu_set_t *srcset1, cpu_set_t *srcset2);
/* Store the logical XOR of the sets srcset1 and srcset2 in destset (which may be one of the source sets). */voidCPU_XOR(cpu_set_t *destset, cpu_set_t *srcset1, cpu_set_t *srcset2);
voidCPU_XOR_S(size_t setsize, cpu_set_t *destset, cpu_set_t *srcset1, cpu_set_t *srcset2);
/* Test whether two CPU set contain exactly the same CPUs. */intCPU_EQUAL(cpu_set_t *set1, cpu_set_t *set2);
intCPU_EQUAL_S(size_t setsize, cpu_set_t *set1, cpu_set_t *set2);
/* The following macros are used to allocate and deallocate CPU sets: *//* Allocate a CPU set large enough to hold CPUs in the range 0 to num_cpus-1 */ cpu_set_t *CPU_ALLOC(int num_cpus);
/*Return the size in bytes of the CPU set that would be needed to hold CPUs in the range 0 to num_cpus-1.This macro provides the value that can be used for the setsize argument in the CPU_*_S() macros */ size_t CPU_ALLOC_SIZE(int num_cpus);
/* Free a CPU set previously allocated by CPU_ALLOC(). */voidCPU_FREE(cpu_set_t *set);/* API *//* Set the CPU affinity for a task */intsched_setaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask);
/* Get the CPU affinity for a task */intsched_getaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask);
/* set CPU affinity attribute in thread attributes object */intpthread_attr_setaffinity_np(pthread_attr_t *attr, size_t cpusetsize,constcpu_set_t *cpuset);
/* get CPU affinity attribute in thread attributes object */intpthread_attr_getaffinity_np(constpthread_attr_t *attr, size_t cpusetsize, cpu_set_t *cpuset);
/* set CPU affinity of a thread */intpthread_setaffinity_np(pthread_t thread, size_t cpusetsize,constcpu_set_t *cpuset);
/* get CPU affinity of a thread */intpthread_getaffinity_np(pthread_t thread, size_t cpusetsize, cpu_set_t *cpuset);
相关的宏通常都分为2种,一种是带_S后缀的,一种不是不带_S后缀的, 从声明上看带_S后缀的宏都多出一个参数setsize.
从功能上看他们的区别是带_S后缀的宏是用于操作动态申请的CPU set(s),所谓的动态申请其实就是使用宏CPU_ALLOC 申请,
参数setsize 可以是通过宏CPU_ALLOC_SIZE 获得,两者的用法详见下面的例子.
相关的API只有6个, 前2个是用来设置进程的CPU亲和性,需要注意的一点是,当这2个API的第一个参数pid为0时,表示使用调用进程的进程ID;
后4个是用来设置线程的CPU亲和性。其实sched_setaffinity()也可以用来设置线程的CPU的亲和性,也就是taskset “-a”选项中提到的TID概念。
3.1 例子一:使用2种方式(带和不带_S后缀的宏)获取当前进程的CPU亲和性
#define_GNU_SOURCE#include #include /* sysconf */#include /* exit */#include intmain(void)
{
inti, nrcpus;cpu_set_t mask; unsignedlongbitmask =0;CPU_ZERO(&mask);/* Get the CPU affinity for a pid */if(sched_getaffinity(0,sizeof(cpu_set_t), &mask) == -1)
{
perror("sched_getaffinity");
exit(EXIT_FAILURE);
}
/* get logical cpu number */ nrcpus = sysconf(_SC_NPROCESSORS_CONF);
for(i =0; i < nrcpus; i++)
{
if(CPU_ISSET(i, &mask)) { bitmask|= (unsignedlong)0x01<< i;
printf("processor #%d is set\n", i);
}
}
printf("bitmask = %#lx\n", bitmask);
exit(EXIT_SUCCESS);
}/*----------------------------------------------------------------*/#define_GNU_SOURCE#include #include /* sysconf */#include /* exit */#include intmain(void)
{
inti, nrcpus;cpu_set_t *pmask; size_t cpusize; unsignedlongbitmask =0;
/* get logical cpu number */ nrcpus = sysconf(_SC_NPROCESSORS_CONF);
pmask = CPU_ALLOC(nrcpus); cpusize= CPU_ALLOC_SIZE(nrcpus);CPU_ZERO_S(cpusize, pmask);/* Get the CPU affinity for a pid */if(sched_getaffinity(0, cpusize, pmask) == -1)
{
perror("sched_getaffinity");CPU_FREE(pmask); exit(EXIT_FAILURE); }for(i =0; i < nrcpus; i++)
{
if(CPU_ISSET_S(i, cpusize, pmask)) { bitmask|= (unsignedlong)0x01<< i;
printf("processor #%d is set\n", i);
}
}
printf("bitmask = %#lx\n", bitmask);CPU_FREE(pmask); exit(EXIT_SUCCESS);}
执行结果如下(4核CPU):
执行结果
3.2 例子二:设置进程的CPU亲和性后再获取显示CPU亲和性
#define_GNU_SOURCE#include #include /* sysconf */#include /* exit */#include intmain(void)
{
int i, nrcpus;
cpu_set_t mask;
unsigned longbitmask =0;
CPU_ZERO(&mask);
CPU_SET(0, &mask);/* add CPU0 to cpu set */ CPU_SET(2, &mask);/* add CPU2 to cpu set *//* Set the CPU affinity for a pid */if(sched_setaffinity(0,sizeof(cpu_set_t), &mask) == -1)
{
perror("sched_setaffinity");
exit(EXIT_FAILURE);
}
CPU_ZERO(&mask);
/* Get the CPU affinity for a pid */if(sched_getaffinity(0,sizeof(cpu_set_t), &mask) == -1)
{
perror("sched_getaffinity");
exit(EXIT_FAILURE);
}
/* get logical cpu number */ nrcpus = sysconf(_SC_NPROCESSORS_CONF);
for(i =0; i < nrcpus; i++)
{
if(CPU_ISSET(i, &mask))
{
bitmask |= (unsignedlong)0x01<< i;
printf("processor #%d is set\n", i);
}
}
printf("bitmask = %#lx\n", bitmask);
exit(EXIT_SUCCESS);
}
3.3 例子三:设置线程的CPU属性后再获取显示CPU亲和性
这个例子来源于Linux的man page.
#define_GNU_SOURCE#include //不用再包含<sched.h>#include #include #include #definehandle_error_en(en, msg) \do{ errno = en; perror(msg); exit(EXIT_FAILURE); }while(0)intmain(intargc,char*argv[])
{
int s, j;
cpu_set_t cpuset;
pthread_t thread;
thread = pthread_self();
/* Set affinity mask to include CPUs 0 to 7 */ CPU_ZERO(&cpuset);
for(j =0; j <8; j++)
CPU_SET(j, &cpuset);
s = pthread_setaffinity_np(thread,sizeof(cpu_set_t), &cpuset);
if(s !=0)
{
handle_error_en(s, "pthread_setaffinity_np");
}
/* Check the actual affinity mask assigned to the thread */ s = pthread_getaffinity_np(thread,sizeof(cpu_set_t), &cpuset);
if(s !=0)
{
handle_error_en(s, "pthread_getaffinity_np");
}
printf("Set returned by pthread_getaffinity_np() contained:\n");
for(j =0; j < CPU_SETSIZE; j++)//CPU_SETSIZE 是定义在<sched.h>中的宏,通常是1024 {
if(CPU_ISSET(j, &cpuset))
{
printf(" CPU %d\n", j);
}
}
exit(EXIT_SUCCESS);
}
3.4 例子四:使用seched_setaffinity设置线程的CPU亲和性
#define_GNU_SOURCE#include #include #include // syscallintmain(void){pid_t tid;int i, nrcpus;
cpu_set_t mask;
unsigned longbitmask =0;
CPU_ZERO(&mask);
CPU_SET(0, &mask);/* add CPU0 to cpu set */ CPU_SET(2, &mask);/* add CPU2 to cpu set */// get tid(线程的PID,线程是轻量级进程,所以其本质是一个进程)tid = syscall(__NR_gettid);// or syscall(SYS_gettid);/* Set the CPU affinity for a pid */if(sched_setaffinity(tid,sizeof(cpu_set_t), &mask) == -1)
{
perror("sched_setaffinity");
exit(EXIT_FAILURE);
}
exit(EXIT_SUCCESS);
}
---------------------------------------------------------------------------------------------------------------------
参考文献:
http://www.yboren.com/posts/44412.html?utm_source=tuicool
http://www.ibm.com/developerworks/cn/linux/l-affinity.html
http://saplingidea.iteye.com/blog/633616
http://blog.csdn.net/ttyttytty12/article/details/11726569
https://en.wikipedia.org/wiki/Processor_affinity
http://blog.chinaunix.net/uid-23622436-id-3311579.html
http://www.cnblogs.com/emanlee/p/3587571.html
http://blog.chinaunix.net/uid-26651253-id-3342161.html
http://blog.csdn.net/delphiwcdj/article/details/8476547
http://www.man7.org/linux/man-pages/man3/pthread_setaffinity_np.3.html
http://www.man7.org/linux/man-pages/man3/pthread_attr_setaffinity_np.3.html
man CPU_SET taskset