在人工智能(AI)的领域中,当我们提到“XXB”(例如6B、34B)这样的术语时,它通常指的是模型的参数量,其中“B”代表“Billion”,即“十亿”。因此,6B表示模型有6十亿(即6亿)个参数,而34B表示模型有34十亿(即34亿)个参数。
Transformer:transformer 模型是一种神经网络架构,可以将一种类型的输入转换为另一种类型的输出。它可以用于生成文本、图像和机器人指令,并且可以对不同数据模式之间的关系进行建模。该模型利用注意力的 AI 概念来强调相关词的权重,可以处理更长的序列,并且可以更有效地扩展。Transformer 架构由协同工作的编码器和解码器组成,注意力机制让转换器根据其他单词或标记的估计重要性对单词的含义进行编码。
LLM(大语言模型):大型语言模型(LLM)是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络,这些神经网络由具有自注意力功能的编码器和解码器组成。编码器和解码器从一系列文本中提取含义,并理解其中的单词和短语之间的关系。
AIGC(人工智能生成内容):AIGC(Artificial Intelligence Generated Content / AI-Generated Content)中文译为人工智能生成内容,一般认为是相对于PCG(专业生成内容)、UCG(用户生成内容)而提出的概念。AIGC狭义概念是利用AI自动生成内容的生产方式。广义的AIGC可以看作是像人类一样具备生成创造能力的AI技术,即生成式AI,它可以基于训练数据和生成算法模型,自主生成创造新的文本、图像、音乐、视频、3D交互内容等各种形式的内容和数据,以及包括开启科学新发现、创造新的价值和意义等。
Fine-tuning (微调):微调(Fine-tuning)是一种常用的机器学习方法,主要用于对已经预训练过的模型进行调整,使其适应新的任务。这些预训练模型通常是在大规模的数据集(例如整个互联网的文本)上进行训练,从而学习到数据的基本模式。随后,这些模型可以通过在较小且特定的数据集上进行进一步训练,即微调,来适应特定的任务。
Token:根据事先定义好的编码算法生成,一个token可以是一个单词,也可以是字符块。
Agent:人工智能代理,使用语言模型来选择要采取的一系列操作,Agent适用于具有记忆和对话功能的更复杂场景。解锁 LLM 的能力限制。特殊性在于它可以使用各种外部工具来完成我们给定的操作。
Prompt :提示 , 提示是提供给 AI 系统以指导其响应或输出的一段文本。例如,当您向 AI 聊天机器人提问或给它一个要写的主题时,这就是提示。
Natural Language Processing (NLP) —— 自然语言处理: 教计算机理解和使用人类语言