设计问题-打乱数组

打乱一个没有重复元素的数组。

示例:

// 以数字集合 1, 2 和 3 初始化数组。
int[] nums = {1,2,3};
Solution solution = new Solution(nums);

// 打乱数组 [1,2,3] 并返回结果。任何 [1,2,3]的排列返回的概率应该相同。
solution.shuffle();

// 重设数组到它的初始状态[1,2,3]。
solution.reset();

// 随机返回数组[1,2,3]打乱后的结果。
solution.shuffle();

Fisher-Yates 洗牌算法
在每次迭代中,获取一个在当前坐标到数组末尾区间的随机整数。接下来,将当前元素和随机选出的下标所指的元素互相交换,元素是允许和它自己交换

nums[] int           [1,2,3,4,5]   
i=0              随机坐标的区间就是[0,5)  假设是随机到坐标为1 那交换后变成 [2,1,3,4,5]
i=1              随机坐标的区间就是[1,5)  假设是随机到坐标还是1 那就和自己交换后变成 [2,1,3,4,5](其实就是没变)
i=2              随机坐标的区间就是[2,5)  假设是随机到坐标为4 那交换后变成 [2,1,5,4,3]
i=3              随机坐标的区间就是[3,5)  假设是随机到坐标为4 那交换后变成 [2,1,5,3,4]
i=4              随机坐标的区间就是[4,5)  只剩下一个坐标4了,因为区间是不包括5,直接和自己交换后变成 [2,1,5,3,4]

复杂度分析

  • 时间复杂度 : O(n)。Fisher-Yates 洗牌算法时间复杂度是线性的,因为算法中生成随机序列,交换两个元素这两种操作都是常数时间复杂度的。
  • 空间复杂度: O(n)。因为要实现 重置 功能,原始数组必须得保存一份,因此空间复杂度并没有优化。
type Solution struct {
   nums []int
   original []int //原始数组
}

//copy复制为值复制,改变原切片的值不会影响新切片。而等号复制为指针复制,改变原切片或新切片都会对另一个产生影响
func Constructor(nums []int) Solution {
    original := make([]int, len(nums))
    copy(original, nums)
    return Solution{original: original, nums: nums}


}


/** Resets the array to its original configuration and return it. */
func (this *Solution) Reset() []int {
    return this.original
}


/** Returns a random shuffling of the array. */
func (this *Solution) Shuffle() []int {
    len := len(this.nums)
    for index,_ := range this.nums  {
        //每次从index到数组末尾这个区间内随机获取一个数,和index做替换
        swapIndex := random(index,len)
        this.nums[index],this.nums[swapIndex] = this.nums[swapIndex],this.nums[index]
    }
    return this.nums
}

// 获取指定区间内的随机数
func random(min, max int) int{
    return rand.Intn(max-min)+min
}


/**
 * Your Solution object will be instantiated and called as such:
 * obj := Constructor(nums);
 * param_1 := obj.Reset();
 * param_2 := obj.Shuffle();
 */
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345