贝叶斯推断:Metropolis-Hastings 采样

前面一篇文章贝叶斯统计:初学指南介绍了最简单的 Metropolis 采样方法,本文将介绍另一种采样 Metropolis-Hastings ,并且会对前文介绍的例子给出证明,为什么 Metropolis 采样work。

回顾

我们简单的回顾下前文的内容,我们首先介绍了为什么需要有mcmc,假设有一个贝叶斯公式:



我们为了求得后验分布,需要去计算P(D)



但是由于好多分布其参数空间非常大,很难计算P(D),于是就提出了数值逼近的方法,但是由于参数空间巨大,我们就要高效的去采样,于是就有了mcmc方法,mcmc方法的一般套路:
  1. 先在参数空间中选择一个
  2. 在参数空间中提议一个新的位置
  3. 根据先验信息和观测数据决定接收或者拒绝
  4. 如果接收跳跃,则跳转到新的位置,并且返回到 step1
  5. 如果拒绝,则保持当前位置并返回到 step1
  6. 连续采用一系列点,最后返回接受的点集合

不同的 mcmc 算法的区别在于怎么选择跳跃方式已经如何决定是否跳跃,前面一篇贝叶斯统计:初学指南介绍了 Metropolis 对上述过程的处理,本文会介绍 Metropolis-Hastings 方法。

Metropolis-Hastings

先介绍算法的整个流程:


下面开始进行回答,为什么上面这个过程work?
首先我们需要上面的过程中,我们采样出来是x是服从概率分布π(x)的,然后我们采样的函数是一个k(x|x),那就有下面的公式:

$$
\pi(x^
) =
\int_{x}\pi(x)k(x^*|x)dx
$$
上面公式保证了如果我们按照k进行采样,能够保证新的采样点和原先的点都是服从同一个分布的。

下面我们来证明如果细致平稳条件成立:


$$
\pi(x)k(x^|x) = \pi(x^)k(x|x^)
$$
则上面的积分也成立。

$$
\begin{align}
\pi(x^
) & = \int_{x}\pi(x)k(x^|x)dx \
& = \int_{x} \pi(x^
)k(x|x^)dx \
& = \pi(x^
) \int_{x} k(x|x^)dx = \pi(x^)
\end{align}
$$
现在我们就证明了细致平稳条件能保证x都服从同一分布。
下面我们继续来看如何选择k分布。
在 Metropolis-Hastings 中我们采取下面的策略:

  1. 从q(x|x)中采样x
  2. 计算接收率

下面我们来证明上面的选取的k满足细致平稳条件:



下面我们来看下q(.)函数的选择,q(.)函数的选择一般有两种:

  • 对称,如高斯分布,均匀分布,这种情况下称为随机游走
  • 非对称:如log-normal,倾向于选择大的x值

下面是接收函数,我们可以得到下面两个点:

  1. 采样值倾向于选择高概率的点,因为
  2. 我们不希望采样点来回震荡,因为:

在上面一篇文章介绍的 Metropolis 算法中,q(.)函数就是对称的,此时接收率就是:


此时完全就是变为衡量哪个参数更能描述数据了,更细致的说明可以看前面一篇文章贝叶斯统计:初学指南

例子

假设我们有两个时序数据,xi,yi,其相关性为ρ,现在两个之间的服从一个二元高斯分布:




为简单起见,我们假设σxx , σyy = 1。
此时我们可以写出似然概率:



然后先验概率如下:

最后我们可以得到后验概率的近似:

下面我们就要通过mh方法来做的。

我们选择q(.)为均匀分布:



此时计算接受率则只计算p(ρ)即可,可以看代码:

rho_candidate=uniform.rvs(rho-0.07,2*0.07)
accept=-3./2*log(1.-rho_candidate**2) - N*log((1.-rho_candidate**2)**(1./2)) - sum(1./(2.*(1.-rho_candidate**2))*(x**2-2.*rho_candidate*x*y+y**2))

计算的是log,方便计算,完整的代码见mh


可以看到我们采样后的ρ均值差不多就是0.4,符合我们的实际数据。

总结

文本介绍了MH算法,并且给出了为什么MH算法的证明,最后以一个简单例子结尾,下面一篇我会继续介绍Gibbs Sampling的,欢迎关注。

参考

Bayesian Inference: Metropolis-Hastings Sampling

你的鼓励是我继续写下去的动力,期待我们共同进步。


这个时代,每个人都是超级个体!关注我,一起成长!
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容