0 如何优雅的写出链表代码?6大学习技巧
一、理解指针或引用的含义
1.含义:将某个变量(对象)赋值给指针(引用),实际上就是就是将这个变量(对象)的地址赋值给指针(引用)。
2.示例:
p—>next = q; 表示p节点的后继指针存储了q节点的内存地址。
p—>next = p—>next—>next; 表示p节点的后继指针存储了p节点的下下个节点的内存地址。
二、警惕指针丢失和内存泄漏(单链表)
1.插入节点
在节点a和节点b之间插入节点x,b是a的下一节点,,p指针指向节点a,则造成指针丢失和内存泄漏的代码:p—>next = x;x—>next = p—>next; 显然这会导致x节点的后继指针指向自身。
正确的写法是2句代码交换顺序,即:x—>next = p—>next; p—>next = x;
2.删除节点
在节点a和节点b之间删除节点b,b是a的下一节点,p指针指向节点a:p—>next = p—>next—>next;
三、利用“哨兵”简化实现难度
1.什么是“哨兵”?
链表中的“哨兵”节点是解决边界问题的,不参与业务逻辑。如果我们引入“哨兵”节点,则不管链表是否为空,head指针都会指向这个“哨兵”节点。我们把这种有“哨兵”节点的链表称为带头链表,相反,没有“哨兵”节点的链表就称为不带头链表。
2.未引入“哨兵”的情况如果在p节点后插入一个节点,只需2行代码即可搞定:
new_node—>next = p—>next;
p—>next = new_node;
但,若向空链表中插入一个节点,则代码如下:
if(head == null){
head = new_node;
}
如果要删除节点p的后继节点,只需1行代码即可搞定:
p—>next = p—>next—>next;
但,若是删除链表的最有一个节点(链表中只剩下这个节点),则代码如下:
if(head—>next == null){
head = null;
}
从上面的情况可以看出,针对链表的插入、删除操作,需要对插入第一个节点和删除最后一个节点的情况进行特殊处理。这样代码就会显得很繁琐,所以引入“哨兵”节点来解决这个问题。
3.引入“哨兵”的情况
“哨兵”节点不存储数据,无论链表是否为空,head指针都会指向它,作为链表的头结点始终存在。这样,插入第一个节点和插入其他节点,删除最后一个节点和删除其他节点都可以统一为相同的代码实现逻辑了。
4.“哨兵”还有哪些应用场景?
这个知识有限,暂时想不出来呀!但总结起来,哨兵最大的作用就是简化边界条件的处理。四、重点留意边界条件处理
经常用来检查链表是否正确的边界4个边界条件:
1.如果链表为空时,代码是否能正常工作?
2.如果链表只包含一个节点时,代码是否能正常工作?
3.如果链表只包含两个节点时,代码是否能正常工作?
4.代码逻辑在处理头尾节点时是否能正常工作?
五、举例画图,辅助思考
核心思想:释放脑容量,留更多的给逻辑思考,这样就会感觉到思路清晰很多。
六、多写多练,没有捷径
5个常见的链表操作:
1.单链表反转
2.链表中环的检测
3.两个有序链表合并
4.删除链表倒数第n个节点
5.求链表的中间节点
1 栈
一、什么是栈?
1.后进者先出,先进者后出,这就是典型的“栈”结构。
2.从栈的操作特性来看,是一种“操作受限”的线性表,只允许在端插入和删除数据。
二、为什么需要栈?
1.栈是一种操作受限的数据结构,其操作特性用数组和链表均可实现。
2.但,任何数据结构都是对特定应用场景的抽象,数组和链表虽然使用起来更加灵活,但却暴露了几乎所有的操作,难免会引发错误操作的风险。
3.所以,当某个数据集合只涉及在某端插入和删除数据,且满足后进者先出,先进者后出的操作特性时,我们应该首选栈这种数据结构。
三、如何实现栈?
1.栈的API
public class Stack<Item> {
//压栈
public void push(Item item){}
//弹栈
public Item pop(){}
//是否为空
public boolean isEmpty(){}
//栈中数据的数量
public int size(){}
//返回栈中最近添加的元素而不删除它
public Item peek(){}}
2.数组实现(自动扩容)
时间复杂度分析:根据均摊复杂度的定义,可以得数组实现(自动扩容)符合大多数情况是O(1)级别复杂度,个别情况是O(n)级别复杂度,比如自动扩容时,会进行完整数据的拷贝。
空间复杂度分析:在入栈和出栈的过程中,只需要一两个临时变量存储空间,所以O(1)级别。我们说空间复杂度的时候,是指除了原本的数据存储空间外,算法运行还需要额外的存储空间。
实现代码:(见另一条留言)
3.链表实现
时间复杂度分析:压栈和弹栈的时间复杂度均为O(1)级别,因为只需更改单个节点的索引即可。
空间复杂度分析:在入栈和出栈的过程中,只需要一两个临时变量存储空间,所以O(1)级别。我们说空间复杂度的时候,是指除了原本的数据存储空间外,算法运行还需要额外的存储空间。
实现代码:(见另一条留言)
四、栈的应用
1.栈在函数调用中的应用
操作系统给每个线程分配了一块独立的内存空间,这块内存被组织成“栈”这种结构,用来存储函数调用时的临时变量。每进入一个函数,就会将其中的临时变量作为栈帧入栈,当被调用函数执行完成,返回之后,将这个函数对应的栈帧出栈。2.栈在表达式求值中的应用(比如:34+13*9+44-12/3)
利用两个栈,其中一个用来保存操作数,另一个用来保存运算符。我们从左向右遍历表达式,当遇到数字,我们就直接压入操作数栈;当遇到运算符,就与运算符栈的栈顶元素进行比较,若比运算符栈顶元素优先级高,就将当前运算符压入栈,若比运算符栈顶元素的优先级低或者相同,从运算符栈中取出栈顶运算符,从操作数栈顶取出2个操作数,然后进行计算,把计算完的结果压入操作数栈,继续比较。
3.栈在括号匹配中的应用(比如:{}{()})
用栈保存为匹配的左括号,从左到右一次扫描字符串,当扫描到左括号时,则将其压入栈中;当扫描到右括号时,从栈顶取出一个左括号,如果能匹配上,则继续扫描剩下的字符串。如果扫描过程中,遇到不能配对的右括号,或者栈中没有数据,则说明为非法格式。
当所有的括号都扫描完成之后,如果栈为空,则说明字符串为合法格式;否则,说明未匹配的左括号为非法格式。
4.如何实现浏览器的前进后退功能?
我们使用两个栈X和Y,我们把首次浏览的页面依次压如栈X,当点击后退按钮时,再依次从栈X中出栈,并将出栈的数据一次放入Y栈。当点击前进按钮时,我们依次从栈Y中取出数据,放入栈X中。当栈X中没有数据时,说明没有页面可以继续后退浏览了。当Y栈没有数据,那就说明没有页面可以点击前进浏览了。
五、思考
- 我们在讲栈的应用时,讲到用函数调用栈来保存临时变量,为什么函数调用要用“栈”来保存临时变量呢?用其他数据结构不行吗?
答:因为函数调用的执行顺序符合后进者先出,先进者后出的特点。比如函数中的局部变量的生命周期的长短是先定义的生命周期长,后定义的生命周期短;还有函数中调用函数也是这样,先开始执行的函数只有等到内部调用的其他函数执行完毕,该函数才能执行结束。正是由于函数调用的这些特点,根据数据结构是特定应用场景的抽象的原则,我们优先考虑栈结构。
2.我们都知道,JVM 内存管理中有个“堆栈”的概念。栈内存用来存储局部变量和方法调用,堆内存用来存储 Java 中的对象。那 JVM 里面的“栈”跟我们这里说的“栈”是不是一回事呢?如果不是,那它为什么又叫作“栈”呢?
答:JVM里面的栈和我们这里说的是一回事,被称为方法栈。和前面函数调用的作用是一致的,用来存储方法中的局部变量。
2 队列
2.1 队列的种类
- 顺序队列,链式队列
- 单向队列,循环队列
- 并发队列(线程安全的队列称为并发队列),阻塞队列(队列为空时取数据会被阻塞,队满时增加数据会被阻塞)
2.2 队列的边界条件
单向队列:队空:head == tail 队满: head == 0 && tail == n
循环队列:tail指针指向最后一个元素的下一个位置,即指向了一个空。队空:head == tail 队满:(tail+1)%n == head
2.3 CAS无锁机制并发队列
CAS算法包含三个参数V(要更新的变量现在的值),E(要更新的变量期望的值),N(新的值)。仅当V == E时,则将变量更新为N并返回,若V != E,则表示已经有其他线程动过这个变量了,则什么都不做且返回当前V的真实值。
CAS总是抱着乐观的态度,认为自己可以成功更新V,但多个线程竞争时,只有一个线程会胜出。失败的线程不会被挂起,可以取消操作也可以允许继续尝试。基于这样的原理,就算是多线程并发,也可以正常处理并发操作。
3 递归
3.1 什么是递归?
1.递归是一种非常高效、简洁的编码技巧,一种应用非常广泛的算法,比如DFS深度优先搜索、前中后序二叉树遍历等都是使用递归。
2.方法或函数调用自身的方式称为递归调用,调用称为递,返回称为归。
3.基本上,所有的递归问题都可以用递推公式来表示,比如
f(n) = f(n-1) + 1;
f(n) = f(n-1) + f(n-2);
f(n)=n*f(n-1);
3.2 为什么使用递归?递归的优缺点?
1.优点:代码的表达力很强,写起来简洁。
2.缺点:空间复杂度高、有堆栈溢出风险、存在重复计算、过多的函数调用会耗时较多等问题。
3.3 什么样的问题可以用递归解决呢?
一个问题只要同时满足以下3个条件,就可以用递归来解决:
1.问题的解可以分解为几个子问题的解。何为子问题?就是数据规模更小的问题。
2.问题与子问题,除了数据规模不同,求解思路完全一样
3.存在递归终止条件
3.4 如何实现递归?
1.递归代码编写
写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。
2.递归代码理解
对于递归代码,若试图想清楚整个递和归的过程,实际上是进入了一个思维误区。
那该如何理解递归代码呢?如果一个问题A可以分解为若干个子问题B、C、D,你可以假设子问题B、C、D已经解决。而且,你只需要思考问题A与子问题B、C、D两层之间的关系即可,不需要一层层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。屏蔽掉递归细节,这样子理解起来就简单多了。
因此,理解递归代码,就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。
3.5 递归常见问题及解决方案
1.警惕堆栈溢出:可以声明一个全局变量来控制递归的深度,从而避免堆栈溢出。
2.警惕重复计算:通过某种数据结构来保存已经求解过的值,从而避免重复计算。
3.6 如何将递归改写为非递归代码?
笼统的讲,所有的递归代码都可以改写为迭代循环的非递归写法。如何做?抽象出递推公式、初始值和边界条件,然后用迭代循环实现。
一样一样