iOS知识总结(二):堆栈以及内存分配

内存分区

  • 栈(stack)

    由编译器自动分配释放,无需手工管理;
    存放函数的参数值、局部变量等;
    操作方式类似于数据结构中的栈,后入先出;
    栈区地址从高到低分配,是一块连续的内存区域,栈顶地址和容量是系统预先规定好的,因此能获得的栈的空间较小。

  • 堆(heap)

    用于动态内存分配;
    由程序员分配释放,若程序员不释放,则可能造成内存泄露,程序 结束时有可能由OS回收;
    堆是向高地址扩展的数据结构,是不连续的内存区域,这是由于系统是用链表来存储空闲内存地址的,自然是不连续的,而链表的遍历方向是由低到高地址的。堆的大小受制于计算机中的有效虚拟内存,所以堆获得的空间比较大且灵活。

  • 全局区/静态区(Data Segment)

    全局变量和静态变量在内存中是放在一起的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域;
    该块内存在程序编译的时候就已经分配好了,在整个程序运行期间始终不变,程序结束后由系统释放。

  • 常量区

    存放常量,不允许修改,常量字符串存放在这里,程序结束后由系统释放。

  • 代码区(text segment)

    存放函数体的二进制代码

整个内存区域由高地址到低地址如下图所示:


1156719-1d0de5ca1edc35af.png

堆和栈的区别

  1. 管理方式不同
    栈是由编译器自动管理,无需程序员手工控制;堆空间的申请和释放是由程序员控制的,容易产生内存泄露。

  2. 空间大小不同
    栈是由高向低扩展的数据结构,是一块连续的区域。栈顶的地址和栈的最大容量是由系统预先设定好的,当申请的空间超过栈的剩余空间的时候,就提示溢出,所以栈的空间较小。

    堆是由低向高扩展的数据结构,是不连续的内存区域。堆的大小受制于计算机中的有效虚拟内存,所以堆获得的空间比较大且灵活。

  3. 是否产生碎片
    对于堆来讲,频繁的创建销毁势必会造成内存空间的不连续,从而产生大量的碎片,使程序效率降低。而栈则没有这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中弹出。

  4. 增长方向不同
    栈的增长方向是向下的,是向着内存地址减小的方向;而堆则相反。

  5. 分配方式不同
    堆都是动态分配的,没有静态分配的堆。栈有两种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配是有alloc函数进行分配的,但是栈的动态分配和堆是不同的,他的动态分配由编译器进行释放,无需我们手工实现。 栈的分配释放是由编译器完成的,栈也有动态分配,但其和堆是不同的,无需手工实现;而堆是动态分配的。

  6. 分配效率不同
    栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行。
    而堆的机制复杂的多,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大的空间,如果没有足够大的空间(可能是由于内存碎片太多),就有需要操作系统来重新整理内存空间,这样就有机会分到足够大小的内存,然后返回。显然,堆的效率比栈要低得多。

其他

之所以分成这么多个区域,主要基于以下考虑:

一个进程在运行过程中,代码是根据流程依次执行的,只需要访问一次,当然跳转和递归有可能使代码执行多次,而数据一般都需要访问多次,因此单独开辟空间以方便访问和节约空间。

临时数据及需要再次使用的代码在运行时放入栈区中,生命周期短。

全局数据和静态数据有可能在整个程序执行过程中都需要访问,因此单独存储管理。

堆区由用户自由分配,以便管理。

//main.cpp 
int a = 0; 全局初始化区 
char *p1; 全局未初始化区 
main() 
{ 
int b; 栈 
char s[] = "abc"; 栈 
char *p2; 栈 
char *p3 = "123456"; 123456\0在常量区,p3在栈上。 
static int c =0; 全局(静态)初始化区 
p1 = (char *)malloc(10); 
p2 = (char *)malloc(20); 
分配得来得10和20字节的区域就在堆区。 
strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。 
}

栈是一个用来存储局部和临时变量的存储空间。在现代操作系统中,一个线程会分配一个栈. 当一个函数被调用,一个stack frame(栈帧)就会被压到stack里。里面包含这个函数涉及的参数,局部变量,返回地址等相关信息。当函数返回后,这个栈帧就会被销毁。而这一切都是自动的,由系统帮我们进行分配与销毁。对于程序员来说,我们无须自己调度。

在objective-c中只支持一个类型对象:blocks。
关于在block中的对象的生命周期问题。出现这问题的原因是,block是新的对象,当你使用block时候,如果你想对其保持引用,你需要对其进行copy操作,(从栈上copy到堆中,并返回一个指向他的指针),而不是对其进行retain操作

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,271评论 5 466
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,725评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,252评论 0 328
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,634评论 1 270
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,549评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 47,985评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,471评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,128评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,257评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,233评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,235评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,940评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,528评论 3 302
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,623评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,858评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,245评论 2 344
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,790评论 2 339