Python: itertools模块任性迭代

Python基础文章集合请移步。

itertools 模块

该模块包含了一系列处理可迭代对象(sequence-like)的函数,从此迭代更任性。

迭代器有一些特点,比如lazy,也就是只有用到的时候才读入到内存里,这样更快更省内存;比如只能调用一次,会被消耗掉。

import itertools as itls

合并迭代器: chain()与izip()

chain()函数接收n个可迭代对象,然后返回一个他们的合集的迭代器,纵向合并,上例子。

for i in itls.chain([1,2,3],['a','b','c']):
    print i,
1 2 3 a b c

izip()函数接收n个可迭代对象,然后将其合并成tuples,横向合并,功能类似zip(),只是返回的是iterator,而不是list。

for i, j in itls.izip([1,2,3],['a','b','c']):
    print i, j
1 a
2 b
3 c

切分迭代器: islice()

islice()函数接收一个迭代器,然后返回其切片,类似于listslice切片操作。参数有startstopstep,其中startstep参数时可选参数。

print "Stop at 5:"
for i in itls.islice(itls.count(),5):
    print i,
Stop at 5:
0 1 2 3 4
print "Start at 5, Stop at 10:"
for i in itls.islice(itls.count(),5,10):
    print i,
Start at 5, Stop at 10:
5 6 7 8 9
print "By tens to 100:"
for i in itls.islice(itls.count(),0,100,10):
    print i,
By tens to 100:
0 10 20 30 40 50 60 70 80 90

复制迭代器: tee()

与Unix里tee方法语意一样,这里接收一个迭代器,然后返回n个(default 2)一样的迭代器。

r = itls.islice(itls.count(),4)
i1, i2, i3 = itls.tee(r,3) # i1 and i2, like a copy

for i, j, k in itls.izip(i1,i2,i3):
    print i, j, k
0 0 0
1 1 1
2 2 2
3 3 3

有一点值得注意,初始的iterator不宜继续使用,如果你使用(consume),那新的迭代器就不会产生这些值了,见例子。

r = itls.islice(itls.count(),4)
i1, i2 = itls.tee(r)
for i in r:
    print 'r:', i
    if i > 0:
        break
for i in i1:
    print 'i1:', i

for i in i2:
    print 'i2:', i
r: 0
r: 1
i1: 2
i1: 3
i2: 2
i2: 3

可以看出,初始迭代器消耗了0,1,在新产生的迭代器里,就不会出现这些值了。

Map迭代器

imap()函数对迭代器进行转换,类似于python内置的map()函数。下例把xrange(5)乘以2。

print "Doubles:"
for i in itls.imap(lambda x: 2*x, xrange(5)):
    print i,
Doubles:
0 2 4 6 8

imap()可以同时接受多个可迭代对象,进行map操作。

print "Multiples:"
for i in itls.imap(lambda x,y:(x, y, x*y), xrange(5),xrange(5,10)):
    print '%d * %d = %d' % i
Multiples:
0 * 5 = 0
1 * 6 = 6
2 * 7 = 14
3 * 8 = 24
4 * 9 = 36

starmap()imap()功能类似,但有点区别,starmap()可以从tuple里解析出多个参数,而imap()只能从多个课迭代对象获取多个参数,看例子。

values = [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]
for i in itls.starmap(lambda x,y:(x,y,x*y), values):
    print '%d * %d = %d' % i
0 * 5 = 0
1 * 6 = 6
2 * 7 = 14
3 * 8 = 24
4 * 9 = 36

产生新迭代器

count()cycle()repeat()函数提供了几个产生迭代器的便捷操作,非常nice。

count()

产生连续的整数,有下限(默认0),没有上限(可以用xrange())。

for i in itls.izip(itls.count(1),['a','b','c']):
    print i
(1, 'a')
(2, 'b')
(3, 'c')

cycle()

无限重复给定的可迭代对象。

i = 0
for item in itls.cycle(['a','b','c']):
    i += 1
    if i == 7:
        break
    print (i, item)
(1, 'a')
(2, 'b')
(3, 'c')
(4, 'a')
(5, 'b')
(6, 'c')

repeat()

重复给定的值,n次。

for i in itls.repeat('over-and-over',3):
    print i
over-and-over
over-and-over
over-and-over

当需要给一个序列添加一个不变对象的时候,用repeat()imap()izip()的combo特别有用。

for i,s in itls.izip(itls.count(), itls.repeat('over-and-over',3)):
    print i, s
0 over-and-over
1 over-and-over
2 over-and-over
for i in itls.imap(lambda x,y:(x,y,x*y),itls.repeat(2),xrange(5)):
    print '%d * %d = %d' % i
2 * 0 = 0
2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8

过滤迭代器

类似于内置的filter()功能,实现迭代器的筛选。

dropwhile()

对item进行判断,如果判断为True,继续;如果判断为False,不继续drop了,只drop之前判断为True的,保留之后的所有items,不再进行判断,全部保留。

def should_drop(x):
    print 'Testing:', x
    return x < 1
for i in itls.dropwhile(should_drop,[ -1, 0, 1, 2, 3, 1, -2 ]):
    print 'Yielding:', i
Testing: -1
Testing: 0
Testing: 1
Yielding: 1
Yielding: 2
Yielding: 3
Yielding: 1
Yielding: -2

takewhile()

dropwhile()功能相反,当判断为False的时候,就不继续take了,只保留之前判断为真item。

def should_take(x):
    print 'Testing:', x
    return x < 2
for i in itls.takewhile(should_take,[ -1, 0, 1, 2, 3, 4, 1, -2 ]):
    print 'Yielding:', i
Testing: -1
Yielding: -1
Testing: 0
Yielding: 0
Testing: 1
Yielding: 1
Testing: 2

ifilter()

dropwhile()takewhile()都不是对所有元素过滤,而ifilter()则尽职尽责地对所有元素过滤。与其对应的是ifilterfalse(),只保留判定为False的item。

def check_item(x):
    print 'Testing:', x
    return x < 1
for i in itls.ifilter(check_item, [ -1, 0, 1, 2, 3, -2 ]):
    print 'Yielding:', i
Testing: -1
Yielding: -1
Testing: 0
Yielding: 0
Testing: 1
Testing: 2
Testing: 3
Testing: -2
Yielding: -2

Group迭代器

groupby(iterable[, keyfunc]) Create an iterator which returns(key, sub-iterator) grouped by each value of key(value)

按给定的key对可迭代对象分组,返回sub-iterator

things = [("animal", "bear"), ("animal", "duck"), ("plant", "cactus"), ("vehicle", "speed boat"), ("vehicle", "school bus")]

groupby()接收两个参数,一个the data to group,一个是the function to group it with

for key, group in itls.groupby(things, lambda x: x[0]):
    print key, group
animal <itertools._grouper object at 0x10bce2150>
plant <itertools._grouper object at 0x10bce2190>
vehicle <itertools._grouper object at 0x10bce2150>

可以看出,分组后,返回三个sub-iterator,我们可以再用一层循环访问。

for key, group in itls.groupby(things, lambda x:x[0]):
    for thing in group:
        print "A %s is a %s." % (thing[1], key)
    print ""
A bear is a animal.
A duck is a animal.

A cactus is a plant.

A speed boat is a vehicle.
A school bus is a vehicle.

且慢,值得注意的一点是,在group之前,务必要按key排序,因为groupby方法遍历对象,当key变化的时候,就会新产生一个group。有例为证!

things = [("animal", "bear"), ("plant", "cactus"), ("animal", "duck")]
for key, group in itls.groupby(things, lambda x: x[0]):
    print key, group
animal <itertools._grouper object at 0x10bce2410>
plant <itertools._grouper object at 0x10bce2490>
animal <itertools._grouper object at 0x10bce2410>

本来是应该分两组的,结果是三组,就是因为没有排序。

new_things = sorted(things,key=lambda x: x[0])
for key, group in itls.groupby(new_things, lambda x:x[0]):
    print key, group
animal <itertools._grouper object at 0x10bce2350>
plant <itertools._grouper object at 0x10bce2410>

这个看上去就对了!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容

  • PYTHON-进阶-ITERTOOLS模块小结转自wklken:http://wklken.me/posts/20...
    C_Y_阅读 953评论 0 2
  • 本文翻译自Functional Programming Howto 本文将介绍Python中函数式编程的特性。在对...
    大蟒传奇阅读 2,598评论 4 14
  • 1. Java基础部分 基础部分的顺序:基本语法,类相关的语法,内部类的语法,继承相关的语法,异常的语法,线程的语...
    子非鱼_t_阅读 31,562评论 18 399
  • python学习笔记 声明:学习笔记主要是根据廖雪峰官方网站python学习学习的,另外根据自己平时的积累进行修正...
    renyangfar阅读 3,016评论 0 10
  • 明天就是传说中的520告白日。所以今天想画一张浪漫点的,像撒星星一样撒一把狗粮,你要吃吗?哈哈~~ 成品图镇楼~~...
    心蓝丫头阅读 5,945评论 7 130