Chapter 6

Chapter 6: Temporal-Difference Learning

Temporal-difference (TD) learning is a combination of DP ideas and MC ideas. Like MC, it learns from sample experience without a model of the environment's dynamics. Like DP, it performs value estimation with bootstrap.
We can see that DP, MC and TD all follow the GPI framework, and they all share the same greedy policy improvement strategy, while their main differences lie in how they estimate the value functions of the policy.

TD Prediction

Both TD and constant-\alpha MC follow the same update rule with different tagret. For MC update, the target is G_t, and the update rule is V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]. For TD(0) update (TD(0) is a special case of TD(\lambda), which will be covered in later chapters), the target is R_{t+1} + \gamma V(S_{t+1}), and the update rule is V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]. Both of them are sample updates because they are based on a single sample successor rather than on a complete distribution of all possible successors, which is called expected updates as in DP.
The advantages of TD compared to MC are mainly twofold. First, TD is fully incremental in step, while MC can only update after a full episode. Thus TD is usually more efficient and can also work on continuous tasks. Second, TD utilizes the structure of the MDP. Under the batch learning setting, MC actually finds the estimation which minimizes mean-squared error on the training set, while batch TD finds the estimation that would be exactly correct for the maximum-likelihood model of the MDP.
The main issue with TD is that it bootstraps, which introduces bias and many other related problems.

Sarsa: On-policy TD Control

Sarsa is an on-policy TD method which learns from a quintuple of (S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}), and the update rule is Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]. Sarsa is on-policy because the update rule in expectation learns a target policy which is identity to the behavior policy.

Q-learning: Off-policy TD Control

Q-learning learns a deterministic target policy and samples episodes with an \epsilon-greedy behavior policy based on the learned Q values. The update rule is Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t)]. An interesting thing here is that although Q-learning is off-policy, we don't have importance sampling here as introduced in MC. The reason is that the sampling process only happens at step t, thus will lead to an importance sampling ratio of 1.

Expected Sarsa

I think Expected Sarsa can be seen as a general form of Q-learning, where its learning target is the expected value over the next state's actions (equal to V_\pi(S_{t+1})?), i.e., Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \sum_a \pi(a|S_{t+1}) Q(S_{t+1}, a) - Q(S_t, A_t)]. It is equivalent to Q-learning if the target policy \pi is deterministic.

Maximization Bias and Double Learning

In both on-policy and off-policy learning, we use Q(\arg\max_a Q(a)) to estimate the value of the optimal action q(A^*), where A^* = \arg\max_a Q(a). This will introduce maximization bias, and double learning is a good way to avoid it. Specifically, we learn two value functions Q_1 and Q_2. We select the optimal action with Q_1, i.e., A^* = \arg\max_a Q_1(a), and estimate its value with Q_2. In this way, we have that \mathbb{E}[Q_2(A^*)] = q(A^*), as the action selection process is indepedent of the value estimation from Q_2.

Approximations in TD

Most approximations in RL comes from how different methods approximate the true learning target \mathbb{E}[G_t]. The methods used by TD have the following intrisic approximations.

  1. Sample update instead of expected update (even expected Sarsa has to sample S_{t+1}).
  2. Bootstrap.
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 196,302评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,563评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 143,433评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,628评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,467评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,354评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,777评论 3 387
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,419评论 0 255
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,725评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,768评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,543评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,387评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,794评论 3 300
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,032评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,305评论 1 252
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,741评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,946评论 2 336

推荐阅读更多精彩内容