python 合并(merge , concat , join , combine_first)

Merge

1 首先建立两个新的DataFrame

import pandas as pd 
import numpy as np 

df1=pd.DataFrame({'key':['a','b','c','d','e'],'data2':np.arange(5)})
df2=pd.DataFrame({'key':['a','b','c'],'data1':np.arange(3)})

In [238]: df1
Out[238]: 
   data1 key
0      0   a
1      1   b
2      2   c
3      3   d
4      4   e

In [239]: df2
Out[239]: 
   data1 key
0      0   a
1      1   b
2      2   c 

2 使用merge函数合并

data=pd.merge(df1,df2,on='key',how='left')

示例如下:

In [30]: data=pd.merge(df1,df2,on='key',how='left')
In [31]: data
Out[31]: 
   data2 key  data1
0      0   a    0.0
1      1   b    1.0
2      2   c    2.0
3      3   d    NaN
4      4   e    NaN

通过indicator表明merge的方式(这个功能日常工作中我比较少用)

In [32]: data=pd.merge(df1,df2,on='key',how='left',indicator=True)
In [33]: data
Out[33]: 
   data2 key  data1     _merge
0      0   a    0.0       both
1      1   b    1.0       both
2      2   c    2.0       both
3      3   d    NaN  left_only
4      4   e    NaN  left_only

当两个数据集合并的列名不相同时用 left_on,right_on

df1=df1.rename(columns={'key':'key1'})
data=pd.merge(df1,df2,left_on='key1',right_on='key',how='left')

In [60]: data
Out[60]: 
   data2 key1  data1  key
0      0    a    0.0    a
1      1    b    1.0    b
2      2    c    2.0    c
3      3    d    NaN  NaN
4      4    e    NaN  NaN

data数据集将两个列名不相同的数据合并在一起了!
注:merge函数默认连接方式是inner,另外有left,right,outer等

3 多数据集合并

是针对合并后的数据再合并,不是一次性合并几个数据集

df1=pd.DataFrame({'key':['a','b','c','d','e'],'data1':np.arange(5)})
df2=pd.DataFrame({'key':['a','b','c'],'data2':np.arange(3)})
df3=pd.DataFrame({'key':['a','b','c','d'],'data3':np.arange(4)})

data=pd.merge(pd.merge(df1,df2,on='key',how='left'),df3,on='key',how='left')
In [55]: data
Out[55]: 
   data1 key  data2  data3
0      0   a    0.0    0.0
1      1   b    1.0    1.0
2      2   c    2.0    2.0
3      3   d    NaN    3.0
4      4   e    NaN    NaN

4 多条件合并

df1=pd.DataFrame({'key':['a','b','c','d','e'],'key1': 
      ['one','one','two','one','two'],'data1':np.arange(5)})
df2=pd.DataFrame({'key':['a','b','c'],'key1': 
      ['one','one','two'],'data2':np.arange(3)})

data=pd.merge(df1,df2,on=['key','key1'],how='left')

In [57]: data
Out[57]: 
   data1 key key1  data2
0      0   a  one    0.0
1      1   b  one    1.0
2      2   c  two    2.0
3      3   d  one    NaN
4      4   e  two    NaN

备注:需要注意的是使用merge合并时,两个数据集的合并条件类型须一致。

Concat(类似numpy的concatenate)

合并两个数据集,可在行或者列上合并(axis)

#默认情况下axis=0 

data=pd.concat([df1,df2])
data1=pd.concat([df1,df2],axis=1)

In [13]: data=pd.concat([df1,df2])

In [14]: data
Out[14]: 
   data1  data2 key
0    NaN    0.0   a
1    NaN    1.0   b
2    NaN    2.0   c
3    NaN    3.0   d
4    NaN    4.0   e
0    0.0    NaN   a
1    1.0    NaN   b
2    2.0    NaN   c

ignore_index 不保留原来连接轴上的索引,生成一组新索引

In [74]: data=pd.concat([df1,df2],ignore_index=True)

In [75]: data
Out[75]: 
   data1  data2 key
0    NaN    0.0   a
1    NaN    1.0   b
2    NaN    2.0   c
3    NaN    3.0   d
4    NaN    4.0   e
5    0.0    NaN   a
6    1.0    NaN   b
7    2.0    NaN   c

#纵向合并(axis=1是列)

In [15]: data1=pd.concat([df1,df2],axis=1)

In [16]: data1
Out[16]: 
   data2 key  data1  key
0      0   a    0.0    a
1      1   b    1.0    b
2      2   c    2.0    c
3      3   d    NaN  NaN
4      4   e    NaN  NaN

多个数据集合并时 data1=pd.concat([df1,df2,....])

keys 可以判断数据来自哪个数据集,生成一个多重索引。

In [36]: data=pd.concat([df1,df2],keys=[0,1])

In [37]: data
Out[37]: 
     data1  data2 key
0 0    NaN    0.0   a
  1    NaN    1.0   b
  2    NaN    2.0   c
  3    NaN    3.0   d
  4    NaN    4.0   e
1 0    0.0    NaN   a
  1    1.0    NaN   b
  2    2.0    NaN   c

Join

索引上的合并,是增加列而不是增加行

df3=pd.DataFrame([[1,2],[3,4],[5,6]],index=['a','b','c'],columns=['ao','bo'])
df4=pd.DataFrame([[7,8],[9,10],[10,12]],index=['e','b','c'],columns=['aoe','boe'])

df3.join(df4,how='outer')

In [38]: df3.join(df4,how='outer')
Out[38]: 
  ao   bo   aoe   boe
a  1.0  2.0   NaN   NaN
b  3.0  4.0   9.0  10.0
c  5.0  6.0  10.0  12.0
e  NaN  NaN   7.0   8.0

当合并的数据表列名字相同,通过lsuffix='', rsuffix='' 区分相同列名的列


df5=pd.DataFrame([[7,8],[9,10],[10,12]],index=['e','b','c'],columns=['aoe','boe'])
df6=pd.DataFrame([[7,8],[9,10],[10,12]],index=['e','b','c'],columns=['aoe','boe'])

In [43]: df5.join(df6,how='outer',lsuffix='_l', rsuffix='_r')
Out[43]: 
   aoe_l  boe_l  aoe_r  boe_r
e      7      8      7      8
b      9     10      9     10
c     10     12     10     12

Combine_first

若df7的数据缺失,则用df8的数据值填充df1的数据值

df7 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan],[np.nan, 7., np.nan]])
df8 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]], index=[1, 2])

In [61]: df7.combine_first(df8)
Out[61]: 
     0    1    2
0  NaN  3.0  5.0
1 -4.6  NaN -8.2
2 -5.0  7.0  4.0
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容