WWDC 2018:更快更强的 Core ML 2.0

本文是 WWDC 2018 Session 708 和 Session 709 的读后感,其视频及配套 PDF 文稿链接如下:
What is New in Core ML, Part 1
What is New in Core ML, Part 2
本文会首先回顾 Core ML 的基本背景知识,其后着重介绍 Core ML 在应用上和工具上的更新。

Core ML 回顾

Core ML 是苹果在2017年推出的机器学习框架。主要支持图像分类和文本信息处理两大功能。其基本流程是获取模型、导入并生成接口、使用接口编程3个步骤。我们来详细分析每一步:

  1. 获取模型。2017年时主要有两种方式:从官网下载和转化第三方框架生成的模型为 Core ML 模型。为了方便转化,苹果推出了 Python 编写的 Core ML Tools。2018年又推出了原生的 Create ML 框架来直接从数据生成 Core ML 模型。Core ML Tools 的优点在于其语法简单直接,缺点在于支持的第三方框架少、生成的模型尺寸过大且不能定制化。

  2. 导入并生成接口。这里直接拖拽模型进入 Xcode,Xcode 会自动生成相应的机器学习模型接口。无需任何手动或其他操作,十分方便友好。美中不足的是生成的接口是固定的、无法增加定制化接口。

  3. 使用编程接口。根据生成的 API 进行编程。2017年 Core ML 模型只支持对单一对象进行预测,无法批量预测,运行效率比较低下。

可以说2017年推出的 Core ML 框架十分易用,但其功能也十分简陋。开发者们只能在一开始模型生成上做定制化操作,且很有可能要依赖第三方框架。之后只能使用 Core ML 生成的固定模型进行编程,十分局限:无法优化预测效率、无法精简尺寸、无法增加新的层级、无法自定义模型。

针对这些缺陷,苹果在今年的 Core ML 2.0 上做出了如下改进——更小。更快。高度定制化。

新功能

Core ML 这次的新功能主要在于模型的接口生成新增了一个可以批量预测的 API。下面代码展示了原来的 API 和 新的 API:

// 预测单一输入
public func prediction(from: MLFeatureProvider,
options: MLPredictionOptions) throws -> MLFeatureProvider

// 预测多个输入
public func predictions(from: MLBatchProvider,
options: MLPredictionOptions) throws -> MLBatchProvider

以前需要用 for 循环完成的操作现在可以用一个方法完成。不进如此,新的批量预测方法相对于 for 循环嵌套单一预测的实现,还用了 batch 进行优化。

原来的 for 循环单一预测方法需要完整地读入每一个数据,将其预处理后发送给 GPU,GPU 计算完毕后再把结果从 GPU 中取出并在程序中输出结果。新的批量预测方法则是消除了预处理和取出的操作,将所有数据一次性发给 GPU,利用 GPU Pipeline 将其逐个计算的同时依次取出结果。另外因为 GPU 一直在运算状态,GPU 可以对计算进行统一优化,使得相似数据的处理越来越快。这样整体的性能就要快上不少,具体逻辑如下图所示:

苹果当场展示了两种方法之间的效率之差:处理40张图片,新的批量预测方法比 for 循环的单一预测方法比要快将近5秒钟,效率上几乎提高了一倍。

除此之外,Core ML Tools 增加了第三方机器学习框架数量,从原来的6个增加到了11个,包括了最知名的 TensorFlow、IBM Watson、MXNet,数量和质量都有大幅提升。

性能优化

性能优化是 Core ML 的重头戏,苹果宣称 Core ML 2 的速度提高了30%。我们来看看苹果做了哪些工作:

  • 量化权重。Core ML 的模型可以根据需求对权重进行量化。权重越低,模型尺寸越小,运转速度越快,占用内存资源也就越少,但是处理效果也就越差。

  • 多尺寸支持。针对图片处理,Core ML 现在只需一个模型,就能处理不同分辨率的图片。相对于之前单一分辨率图片的模型,该模型更加灵活,且因为在底层大量共享代码,使得模型的体积也远远小于原来多个单独模型体积之和。

我们来重点看下量化权重。2017年时 Core ML 的所有模型权重都是32位,也就是说每个模型可以识别 2^32 个不同的特征值。这虽然带来了非常之高的准确度,但同时也使得 Core ML 模型非常之大(20+M)。对于 App 开发来说,尺寸大小是非常值得注意的因素。借鉴 App Thinning 的思路,苹果针对 Core ML 的模型大小进行了优化。现在开发者可以使用 Core ML Tools 对原来32位权重的模型进行量化,根据需要,苹果支持16位、8位、4位等权重。权重越低。模型尺寸越小,运转速度越快,但是处理效果也就越差。所以还是要根据实际需求进行选择,下图中我们可以看到不同模型尺寸和处理效果的对比。

在权重量化上我们可以针对需求做出最小体积的模型;同时针对多尺寸图片我们可以合并多个类似功能的模型;同时 Core ML Tools 又提供了自由定制权重的 API。在多重措施的优化之下,Core ML 的模型可以最大限度的缩小尺寸,从而带来更合适的加载和运算效率。

定制化

苹果在定制化方面推出了两种方案:定制化神经网络层和定制化模型。我们先来看定制化神经网络层。

很多 Core ML 模型的内部实现是多层神经网络,每一层接受上一层的输入,然后做出相应处理再将结果输出给下一层。例如,识别照片中动物是马的过程如下图所示:

这个神经网络每一层都是固定的、由 Core ML 框架自动生成并优化,我们不能做任何操作。这使得模型的功能大大受到局限:试想我们如果要基于上述模型生成一个新模型,使得该模型不仅能识别马,还能识别鸟、鱼、猫、狗等各种动物,最简单的做法就是将上述模型中判别动物是马的层级给替换掉。Core ML 2 现在提供了这种功能,具体操作步骤是:

  1. 获取生成含有特定的层级的模型。一般获取方法是依靠第三方神经网络库,比如 Keras。
  2. 用 Core ML Tools 将含有特定层级的模型转化成对应的 Core ML 模型。这其中我们要自定义特殊层转化方法。具体代码如下:
# 用 keras 神经网络库生成模型,其中特殊层为 GridSampler
model = keras.model.load_model('spatial_transformer_MNIST.h5', custom_object: {'GridSampler': GridSampler})

# 自定义 Core ML 模型中对应特殊层 GridSampler 的转化方法
def convert_grid_sampler(keras_layer):

  params = NerualNetwork_pb2.customLayerParams()

  # 定义名称和描述
  params.className = 'AAPLGridSampler'
  params.description = 'Custom grid sampler layer for the spatial transformer network'

  # 定义层级参数,这里我们只要处理图片的长和宽
  params.parameters["output_height"].intValue = keras_layer.output_size[0]
  params.parameters["output_width"].intValue = keras_layer.output_size[1]

  return params

# 用 Core ML Tools 将 Keras 模型转化,其中特定层 GridSampler 的转化方法定义为 convert_grid_sampler
coreml_model = coremltools.converters.keras.convert(model, custom_conversion_functions = {'GridSampler': convert_grid_sampler})
  1. 将 Core ML 模型导入 Xcode 中,自定义特殊层的接口。其对应类务必实现 MLCustomLayer 协议,它是自定义神经网络层的行为协议,每个方法的具体解释可以参照苹果的官方文档:MLCustomLayer
public protocol MLCustomLayer {
  public init(parameters: [String : Any]) throws

  public func setWeightData(_ weights: [Data]) throws

  public func outputShapes(forInputShapes: [[NSNumber]]) throws -> [[NSNumber]]

  public func evaluate(inputs: [MLMultiArray], outputs: [MLMultiArray]) throws
 }

同时,上文中提到的GridSampler的具体实现如下图:

当然并不是所有模型的实现都是神经网络。所以苹果还推出了定制化模型。实现一个定制化模型的方法十分简单,就是实现 MLCustomModel协议:

public protocol MLCustomModel {
  public init(modelDescription: MLModelDescription, parameters: [String : Any]) throws
  
  public func prediction(from: MLFeatureProvider,
options: MLPredictionOptions) throws -> MLFeatureProvider
 
  optional public func predictions(from: MLBatchProvider,
options: MLPredictionOptions) throws -> MLBatchProvider
}

其具体说明亦可以参考苹果官方文档

总结

Core ML 2 在2017年的基础上增加了新功能,同时对模型大小和运转效率进行了相应优化。其配套工具 Core ML Tools 也增加了可支持的机器学习框架,同时开发者可以借助工具自定义神经网络层和 Core ML 模型。除此之外,苹果推出的 Create ML 也极大地解决了模型获取方面的局限。目前 Core ML 已经深度应用于 Siri、Photos、QuickType 等原生应用上,采用 Core ML 的第三方应用也多达182个,相信在不久的将来,Core ML 会成为所有主流 App 的标配。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容