聚类算法-最大最小距离算法


每篇一句:

You're gonna have to face your fear,sooner or later. —《冰河世纪》


最大最小距离算法:

最大最小距离算法也成为小中取大距离算法。这种方法首先根据确定的距离阈值寻找聚类中心,然后根据最近邻规则把模式样本划分到各聚类中心对应的类别中。

  • 问题的提出

    已知N个待分类的模式样本{X1,X2,...,Xn},要求分别分类到聚类中心Z1,Z2,...对应的类别中。

  • 算法描述

    1.任选一个模式样本作为第一聚类中心Z1。

    2.选择离Z1距离最远的模式样本作为第二类聚类中心Z2。

    3.逐个计算每个模式样本与已知确定的所有聚类中心之间的距离,并选出其中的最小距离。

    4.在所有最小距离中选出一个最大距离,如果该最大值达到||Z1-Z2||的一定分数比值以上,则将产生最大距离的那个模式样本定义为新增聚类中心,并返回上一步。否则,聚类中心的计算步骤结束。

    5.重复步骤3和4,直到没有新的聚类中心出现为止。

    6.寻找聚类中心的运算结束后,将模式样本{Xi;i=1,2,...,n}按最近距离划分到相应的聚类中心所代表的的类别中。

从上面的步骤可以看出,最大最小距离算法可以概括的描述为以“试探类间欧氏距离最大”作为预选出最初聚类中心的条件;根据最小距离中的最大距离情况,确定其余的聚类中心;将全部聚类中心确定完之后,再按最近距离将所有模式划分到各类中去。算法的关键是怎样开新类,以及新类中心如何确定。因为算法的核心是寻找最小距离中的最大距离,所以也称小中取大距离算法。


python实现:

  • 解释说明见代码中注释
# coding=utf-8

# 最大最小距离算法的Python实现
# 数据集形式data=[[],[],...,[]]
# 聚类结果形式result=[[[],[],...],[[],[],...],...]
# 其中[]为一个模式样本,[[],[],...]为一个聚类

import math


def start_cluster(data, t):
    zs = [data[0]]  # 聚类中心集,选取第一个模式样本作为第一个聚类中心Z1
    # 第2步:寻找Z2,并计算阈值T
    T = step2(data, t, zs)
    # 第3,4,5步,寻找所有的聚类中心
    get_clusters(data, zs, T)
    # 按最近邻分类
    result = classify(data, zs, T)
    return result


# 分类
def classify(data, zs, T):
    result = [[] for i in range(len(zs))]
    for aData in data:
        min_distance = T
        index = 0
        for i in range(len(zs)):
            temp_distance = get_distance(aData, zs[i])
            if temp_distance < min_distance:
                min_distance = temp_distance
                index = i
        result[index].append(aData)
    return result


# 寻找所有的聚类中心
def get_clusters(data, zs, T):
    max_min_distance = 0
    index = 0
    for i in range(len(data)):
        min_distance = []
        for j in range(len(zs)):
            distance = get_distance(data[i], zs[j])
            min_distance.append(distance)
        min_dis = min(dis for dis in min_distance)
        if min_dis > max_min_distance:
            max_min_distance = min_dis
            index = i
    if max_min_distance > T:
        zs.append(data[index])
        # 迭代
        get_clusters(data, zs, T)


# 寻找Z2,并计算阈值T
def step2(data, t, zs):
    distance = 0
    index = 0
    for i in range(len(data)):
        temp_distance = get_distance(data[i], zs[0])
        if temp_distance > distance:
            distance = temp_distance
            index = i
    # 将Z2加入到聚类中心集中
    zs.append(data[index])
    # 计算阈值T
    T = t * distance
    return T


# 计算两个模式样本之间的欧式距离
def get_distance(data1, data2):
    distance = 0
    for i in range(len(data1)):
        distance += pow((data1[i]-data2[i]), 2)
    return math.sqrt(distance)

# 数据集
data = [[0, 0], [3, 8], [1, 1], [2, 2], [5, 3], [4, 8], [6, 3], [5, 4], [6, 4], [7, 5]]
# 设置阈值比例
t = 0.5
result = start_cluster(data, t)
for i in range(len(result)):
    print "----------第" + str(i+1) + "个聚类----------"
    print result[i]

# 打印结果:
# ----------第1个聚类----------
# [[0, 0], [1, 1], [2, 2]]
# ----------第2个聚类----------
# [[3, 8], [4, 8]]
# ----------第3个聚类----------
# [[5, 3], [6, 3], [5, 4], [6, 4], [7, 5]]


最后:

本文简单的介绍了 聚类算法——最大最小距离算法 的相关内容,以及相应的代码实现。如果有错误的或者可以改进的地方,欢迎大家指出。

代码地址:聚类算法——最大最小距离算法(码云)


原文地址:聚类算法——最大最小距离算法也是本人的CSDN账号,欢迎关注,博客会第一时间在CSDN更新。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容