janusgraph gremlin-hadoop hdp安装部署文档

修改hdp的yarn配置

  • 登陆到Ambari找到'Ambari -> YARN -> configs'的'Advanced'页面
  • 找到页面底部的 'add custom property for yarn-site'
  • 点击 'add property' 并添加 'hdp.version' 和版本号
  • 保存配置并重启相关的服务

NOTE: 如果不配置会出现"bad substitution" error running Spark on Yarn[ref]

环境变量设置

在集群的环境变量需要添加如下配置

export HADOOP_CONF_DIR=/etc/hadoop/conf
export HBASE_CONF_DIR=/etc/hbase/conf
export CLASSPATH=$HADOOP_CONF_DIR:$HBASE_CONF_DIR

添加相应的jar到$JANUSGRAPH_HOME/lib

  • 添加hdp的spark-assembly-1.6.3.2.6.1.0-129-hadoop2.7.3.2.6.1.0-129.jar
  • 删除之前lib下的spark相关的jar
  • 把lib文件夹分发到集群的其他机器

NOTE: 上面添加的spark-assembly需要和hdp的版本统一。要不然可能会导致无法访问hdfs上的数据。

配置$JANUSGRAPH_HOME/conf/hadoop-graph/hadoop-load.properties

#
# Hadoop Graph Configuration
#
gremlin.graph=org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph
gremlin.hadoop.graphInputFormat=org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoInputFormat
gremlin.hadoop.graphOutputFormat=org.apache.hadoop.mapreduce.lib.output.NullOutputFormat
gremlin.hadoop.inputLocation=./data/grateful-dead.kryo
gremlin.hadoop.outputLocation=output
gremlin.hadoop.jarsInDistributedCache=true

#
# GiraphGraphComputer Configuration
#
giraph.minWorkers=2
giraph.maxWorkers=2
giraph.useOutOfCoreGraph=true
giraph.useOutOfCoreMessages=true
mapred.map.child.java.opts=-Xmx1024m
mapred.reduce.child.java.opts=-Xmx1024m
giraph.numInputThreads=4
giraph.numComputeThreads=4
giraph.maxMessagesInMemory=100000

#
# SparkGraphComputer Configuration
#
spark.master=yarn-client
spark.executor.memory=512m
spark.serializer=org.apache.spark.serializer.KryoSerializer
spark.app.name=janusgraph-data-load
spark.app.id=janusgraph-data-load
#分发到集群的lib文件的地址,和相关组件配置文件的地址
spark.executor.extraClassPath=/opt/janusgraph-lib/*:/etc/hadoop/conf:/etc/hbase/conf:/etc/spark/conf
#hdp的版本
spark.yarn.am.extraJavaOptions=-Dhdp.version=2.6.1.0-129
spark.executor.extraJavaOptions=-Dhdp.version=2.6.1.0-129
spark.driver.extraJavaOptions=-Dhdp.version=2.6.1.0-129

NOTE: read-hadoop.properties相关的spark的配置和这个文件的相同。

测试

bin/gremlin.sh

         \,,,/
         (o o)
-----oOOo-(3)-oOOo-----
plugin activated: janusgraph.imports
gremlin> :plugin use tinkerpop.hadoop
==>tinkerpop.hadoop activated
gremlin> :plugin use tinkerpop.spark
==>tinkerpop.spark activated
gremlin> :load data/grateful-dead-janusgraph-schema.groovy
==>true
==>true
gremlin> graph = JanusGraphFactory.open('conf/janusgraph-hbase.properties')
==>standardjanusgraph[hbase:[kg-server-96.kg.com, kg-agent-95.kg.com, kg-agent-97.kg.com]]
gremlin> defineGratefulDeadSchema(graph)
==>null
gremlin> graph.close()
==>null
gremlin> if (!hdfs.exists('data/grateful-dead.kryo')) hdfs.copyFromLocal('data/grateful-dead.kryo','data/grateful-dead.kryo')
==>null
gremlin> graph = GraphFactory.open('conf/hadoop-graph/hadoop-load.properties')
==>hadoopgraph[gryoinputformat->nulloutputformat]
gremlin> blvp = BulkLoaderVertexProgram.build().writeGraph('conf/janusgraph-hbase.properties').create(graph)
==>BulkLoaderVertexProgram[bulkLoader=IncrementalBulkLoader,vertexIdProperty=bulkLoader.vertex.id,userSuppliedIds=false,keepOriginalIds=true,batchSize=0]
gremlin> graph.compute(SparkGraphComputer).program(blvp).submit().get()
...
==>result[hadoopgraph[gryoinputformat->nulloutputformat],memory[size:0]]
gremlin> graph.close()
==>null
gremlin> graph = GraphFactory.open('conf/hadoop-graph/read-hbase.properties')
==>hadoopgraph[cassandrainputformat->gryooutputformat]
gremlin> g = graph.traversal().withComputer(SparkGraphComputer)
==>graphtraversalsource[hadoopgraph[cassandrainputformat->gryooutputformat], sparkgraphcomputer]
gremlin> g.V().count()
...
==>808

NOTE:测试需要切换到spark用户下运行,防止无法访问hdfs的错误。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容