bool ViEChannel::ChannelDecodeThreadFunction
bool ViEChannel::ChannelDecodeProcess()
int32_t Decode(uint16_t maxWaitTimeMs)
int32_t VideoReceiver::Decode(uint16_t maxWaitTimeMs)
VCMEncodedFrame* VCMReceiver::FrameForDecoding
VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode
void VCMJitterBuffer::UpdateJitterEstimate
void VCMJitterBuffer::UpdateJitterEstimate
VCMInterFrameDelay::CalculateDelay
// Calculates the delay of a frame with the given timestamp.
// This method is called when the frame is complete.
bool
VCMInterFrameDelay::CalculateDelay(uint32_t timestamp,
int64_t *delay,
int64_t currentWallClock)
{
if (_prevWallClock == 0)
{
// First set of data, initialization, wait for next frame
_prevWallClock = currentWallClock;
_prevTimestamp = timestamp;
*delay = 0;
return true;
}
int32_t prevWrapArounds = _wrapArounds;
CheckForWrapArounds(timestamp);
// This will be -1 for backward wrap arounds and +1 for forward wrap arounds
int32_t wrapAroundsSincePrev = _wrapArounds - prevWrapArounds;
// Account for reordering in jitter variance estimate in the future?
// Note that this also captures incomplete frames which are grabbed
// for decoding after a later frame has been complete, i.e. real
// packet losses.
if ((wrapAroundsSincePrev == 0 && timestamp < _prevTimestamp) || wrapAroundsSincePrev < 0)
{
*delay = 0;
return false;
}
// Compute the compensated timestamp difference and convert it to ms and
// round it to closest integer.
_dTS = static_cast<int64_t>((timestamp + wrapAroundsSincePrev *
(static_cast<int64_t>(1)<<32) - _prevTimestamp) / 90.0 + 0.5);
// frameDelay is the difference of dT and dTS -- i.e. the difference of
// the wall clock time difference and the timestamp difference between
// two following frames.
*delay = static_cast<int64_t>(currentWallClock - _prevWallClock - _dTS);
_prevTimestamp = timestamp;
_prevWallClock = currentWallClock;
return true;
}
currentWallClock:此帧最后一个包到达时间戳
_prevWallClock :前一帧最后一个包到达时间戳
timestamp:当前帧时间戳
_prevTimestamp :前一帧时间戳
_wrapArounds:表示时间戳有没有从2^32-1跳到1,即一个循环。
可以看出,CalculateDelay()这个函数主要目标是计算出上一帧最後一個包到当前帧最后一个包的时间差。即相当于传输当前帧所耗费的時間。
// Updates the estimates with the new measurements
void
VCMJitterEstimator::UpdateEstimate(int64_t frameDelayMS, uint32_t frameSizeBytes,
bool incompleteFrame /* = false */)
{
if (frameSizeBytes == 0)
{
return;
}
int deltaFS = frameSizeBytes - _prevFrameSize;
if (_fsCount < kFsAccuStartupSamples)
{
_fsSum += frameSizeBytes;
_fsCount++;
}
else if (_fsCount == kFsAccuStartupSamples)
{
// Give the frame size filter
_avgFrameSize = static_cast<double>(_fsSum) /
static_cast<double>(_fsCount);
_fsCount++;
}
if (!incompleteFrame || frameSizeBytes > _avgFrameSize)
{
double avgFrameSize = _phi * _avgFrameSize +
(1 - _phi) * frameSizeBytes;
if (frameSizeBytes < _avgFrameSize + 2 * sqrt(_varFrameSize))
{
// Only update the average frame size if this sample wasn't a
// key frame
_avgFrameSize = avgFrameSize;
}
// Update the variance anyway since we want to capture cases where we only get
// key frames.
_varFrameSize = VCM_MAX(_phi * _varFrameSize + (1 - _phi) *
(frameSizeBytes - avgFrameSize) *
(frameSizeBytes - avgFrameSize), 1.0);
}
// Update max frameSize estimate
_maxFrameSize = VCM_MAX(_psi * _maxFrameSize, static_cast<double>(frameSizeBytes));
if (_prevFrameSize == 0)
{
_prevFrameSize = frameSizeBytes;
return;
}
_prevFrameSize = frameSizeBytes;
// Only update the Kalman filter if the sample is not considered
// an extreme outlier. Even if it is an extreme outlier from a
// delay point of view, if the frame size also is large the
// deviation is probably due to an incorrect line slope.
double deviation = DeviationFromExpectedDelay(frameDelayMS, deltaFS);
if (fabs(deviation) < _numStdDevDelayOutlier * sqrt(_varNoise) ||
frameSizeBytes > _avgFrameSize + _numStdDevFrameSizeOutlier * sqrt(_varFrameSize))
{
// Update the variance of the deviation from the
// line given by the Kalman filter
EstimateRandomJitter(deviation, incompleteFrame);
// Prevent updating with frames which have been congested by a large
// frame, and therefore arrives almost at the same time as that frame.
// This can occur when we receive a large frame (key frame) which
// has been delayed. The next frame is of normal size (delta frame),
// and thus deltaFS will be << 0. This removes all frame samples
// which arrives after a key frame.
if ((!incompleteFrame || deviation >= 0.0) &&
static_cast<double>(deltaFS) > - 0.25 * _maxFrameSize)
{
// Update the Kalman filter with the new data
KalmanEstimateChannel(frameDelayMS, deltaFS);
}
}
else
{
int nStdDev = (deviation >= 0) ? _numStdDevDelayOutlier : -_numStdDevDelayOutlier;
EstimateRandomJitter(nStdDev * sqrt(_varNoise), incompleteFrame);
}
// Post process the total estimated jitter
if (_startupCount >= kStartupDelaySamples)
{
PostProcessEstimate();
}
else
{
_startupCount++;
}
}
获得jitterMS,并设置到渲染,以使得平稳的显示。
bool ViEChannel::ChannelDecodeProcess()
int32_t Decode(uint16_t maxWaitTimeMs)
int32_t VideoReceiver::Decode
VCMEncodedFrame* VCMReceiver::FrameForDecoding
uint32_t VCMJitterBuffer::EstimatedJitterMs()
int VCMJitterEstimator::GetJitterEstimate(double rttMultiplier)
// We have a frame - Set timing and render timestamp.
timing_->SetJitterDelay(jitter_buffer_.EstimatedJitterMs());
bool ViEChannel::ChannelDecodeProcess()
int32_t Decode(uint16_t maxWaitTimeMs)
int32_t VideoReceiver::Decode(uint16_t maxWaitTimeMs)
void VCMTiming::UpdateCurrentDelay
void VCMTiming::UpdateCurrentDelay(int64_t render_time_ms,
int64_t actual_decode_time_ms) {
CriticalSectionScoped cs(crit_sect_);
uint32_t target_delay_ms = TargetDelayInternal();
int64_t delayed_ms = actual_decode_time_ms -
(render_time_ms - MaxDecodeTimeMs() - render_delay_ms_);
if (delayed_ms < 0) {
return;
}
if (current_delay_ms_ + delayed_ms <= target_delay_ms) {
current_delay_ms_ += static_cast<uint32_t>(delayed_ms);
} else {
current_delay_ms_ = target_delay_ms;
}
}
uint32_t VCMTiming::TargetDelayInternal() const {
return std::max(min_playout_delay_ms_,
jitter_delay_ms_ + MaxDecodeTimeMs() + render_delay_ms_);
}
这里通过计算wait_time_ms ,得出取出下一帧需要等待的时间。
uint32_t wait_time_ms = timing_->MaxWaitingTime(
next_render_time_ms, clock_->TimeInMilliseconds());
uint32_t VCMTiming::MaxWaitingTime(int64_t render_time_ms, int64_t now_ms)
const {
CriticalSectionScoped cs(crit_sect_);
const int64_t max_wait_time_ms = render_time_ms - now_ms -
MaxDecodeTimeMs() - render_delay_ms_;
if (max_wait_time_ms < 0) {
return 0;
}
return static_cast<uint32_t>(max_wait_time_ms);
}
获得next_render_time_ms ,这里综合考虑了jitter_delay+decode_delay+render_delay
next_render_time_ms = timing_->RenderTimeMs(frame_timestamp, now_ms);
int64_t VCMTiming::RenderTimeMs(uint32_t frame_timestamp, int64_t now_ms)
const {
CriticalSectionScoped cs(crit_sect_);
const int64_t render_time_ms = RenderTimeMsInternal(frame_timestamp, now_ms);
return render_time_ms;
}
int64_t VCMTiming::RenderTimeMsInternal(uint32_t frame_timestamp,
int64_t now_ms) const {
int64_t estimated_complete_time_ms =
ts_extrapolator_->ExtrapolateLocalTime(frame_timestamp);
if (estimated_complete_time_ms == -1) {
estimated_complete_time_ms = now_ms;
}
// Make sure that we have at least the playout delay.
uint32_t actual_delay = std::max(current_delay_ms_, min_playout_delay_ms_);
return estimated_complete_time_ms + actual_delay;
}