1.如何开启深度学习之旅?这三大类125篇论文为你导航(附资源下载)
https://www.jiqizhixin.com/articles/375cf437-4690-4308-b538-afe9d8cb2b89
2.卷积神经网络的推导和实现
http://cogprints.org/5869/1/cnn_tutorial.pdf
3.LeNet论文
http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
4.AlexNet论文
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
5.VGGNet论文
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
6.NIN(Network in Network)论文
https://arxiv.org/abs/1312.4400
7.GoogLeNet论文
https://arxiv.org/abs/1409.4842
8.ResNet(Residual Network,残差网络)
https://arxiv.org/abs/1512.03385
9.RL(reinforcement learning,强化学习)
10.深度森林
https://arxiv.org/abs/1702.08835
11.艺术风格的神经网络算法(A Nerual Algorithm of Artistic Style)
https://arxiv.org/pdf/1508.06576v2.pdf
12.作曲风格的深度学习创作,代码实现
https://github.com/tensorflow/magenta