R包TCGAbiolinks下载TCGA转录组数据

(一)R包准备


library(BiocManager)

BiocManager::install("airway")

BiocManager::install("TCGAbiolinks")

library(airway)

library(TCGAbiolinks)

library(dplyr)

library(DT)

library(EDASeq)

(二)选择癌症类型


getGDCprojects()$project_id    ###查看各个癌种的项目id,总共有70个ID值

TCGAbiolinks:::getProjectSummary("TCGA-LUAD")   ###查看project中有哪些数据类型,如查询"TCGA-LUAD",有7种数据类型,case_count为病人数,file_count为对应的文件数,file_size为总文件大小,若要下载表达谱,可以设置参数data.category="Transcriptome Profiling"

(三)下载LUAD肺腺癌的转录组数据


query<-GDCquery(project="TCGA-LUAD",data.category="Transcriptome Profiling",data.type="Gene Expression Quantification",workflow.type="HTSeq - Counts")     ###建立查询

samplesDown<-getResults(query,cols=c("cases"))   ###查看所有样本编号

dataSmTP<-TCGAquery_SampleTypes(barcode=samplesDown,typesample="TP")   ###从结果中筛选出肿瘤样本barcode:TP(primary solid tumor)

dataSmNT<-TCGAquery_SampleTypes(barcode=samplesDown,typesample="NT")   ###从结果中筛选出NT(正常组织)样本的barcode:NT()

dataSmTR<-TCGAquery_SampleTypes(barcode=samplesDown,typesample="TR")   ###还有2个复发的样本barcode:NR(Recurrent Solid Tumor)

queryDown<-GDCquery(project="TCGA-LUAD",data.category="Transcriptome Profiling",data.type="Gene Expression Quantification",workflow.type="HTSeq - Counts",barcode=c(dataSmTP,dataSmNT))   ###重新按照样本分组建立查询

GDCdownload(query=queryDown,files.per.chunk=6,method="api",directory="lung_cancer")   ###下载查询到的数据,默认存放位置为当前工作目录下的GDCdata文件夹中

(四)数据读入与预处理


dataPrep1<-GDCprepare(query=queryDown,save=TRUE,save.filename="luad_cases.rda",directory="lung_cancer")   ###读取下载的数据并将其准备到R对象中,在工作目录生成luad_case.rda文件,同时还产生Human_genes__GRCh38_p12_.rda文件(project文件)

save(dataPrep1, file="dataPrep1_LUAD_TP_TN.RData")

rm(list=ls())

load("dataPrep1_LUAD_TP_TN.RData")

dataPrep <- assay(dataPrep1)


rreference:

https://www.jianshu.com/p/3b4c07f7e5f3

TCGAbiolinks

https://www.jianshu.com/p/563c2f23e1ad

TCGA数据下载

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容