Tensorflow版本yolo v3源码阅读笔记(1)

这段时间学习了yolo v3的源代码,作一下笔记。这个tensorflow版本的yolo v3源码出自这里malin9402

yolo v3中首先使用的是一个darknet53的模块来提取输入图片的特征,这个darknet53的模块比较特别,全部使用的是卷积神经网络,没有使用池化层,全连接层,下面来分析一下它的代码。

1. darknet53模型

import tensorflow as tf #导入库
import core.common as common #导入所需要的文件


def darknet53(input_data):

    #[bs,416,416,3] => [bs,416,416,32]
    input_data = common.convolutional(input_data, (3, 3,  3,  32))
    #[bs,416,416,32] => [bs,208,208,64]
    input_data = common.convolutional(input_data, (3, 3, 32,  64), downsample=True)

    for i in range(1):
        #[bs,208,208,64] => [bs,208,208,64]
        input_data = common.residual_block(input_data,  64,  32, 64)

    #[bs,208,208,64] => [bs,104,104,128]
    input_data = common.convolutional(input_data, (3, 3,  64, 128), downsample=True)

    for i in range(2):
        #[bs,104,104,128] => [bs,104,104,128]
        input_data = common.residual_block(input_data, 128,  64, 128)

    #[bs,104,104,128] => [bs,52,52,256]
    input_data = common.convolutional(input_data, (3, 3, 128, 256), downsample=True)

    for i in range(8):
        #[bs,52,52,256] => [bs,52,52,256]
        input_data = common.residual_block(input_data, 256, 128, 256)

    route_1 = input_data#[bs,52,52,256]
    #[bs,52,52,256] => [bs,26,26,512]
    input_data = common.convolutional(input_data, (3, 3, 256, 512), downsample=True)

    for i in range(8):
        #[bs,26,26,512] => [bs,26,26,512]
        input_data = common.residual_block(input_data, 512, 256, 512)

    route_2 = input_data#[bs,26,26,512]
    #[bs,26,26,512] => [bs,13,13,1024]
    input_data = common.convolutional(input_data, (3, 3, 512, 1024), downsample=True)

    for i in range(4):
        #[bs,13,13,1024] => [bs,13,13,1024]
        input_data = common.residual_block(input_data, 1024, 512, 1024)

    return route_1, route_2, input_data

最后darknet53返回三个尺度的特征,

route_1: [bs,52,52,256]
route_2: [bs,26,26,512]
input_data: [bs,13,13,1024]

另外还要说明的是,我计算了一下darknet53模型的网络层,发现只有52层网络(1+2+8+8+4)*2 = 46个卷积层
1+1+1+1+1+1 = 6个卷积层
6+46 = 52个卷积层

后来才了解到,darknet53是在ImageNet上的经典分类模型,后来被yolo v3的作者移植到了yolo v3中,但是去掉了最后的池化层和全连接层,所以只剩52层了。

2. darknet53模型中用到的卷积层和残差网络

先看代码,此代码位于core/common.py文件中。
从上面darknet53的代码中可以看到,其中用到了common.convolutional卷积层和common.residual_block残差模块。下面我们来分析分析。

import tensorflow as tf

#这个就是我们常说的bn层了
class BatchNormalization(tf.keras.layers.BatchNormalization):
    """
    "Frozen state" and "inference mode" are two separate concepts.
    `layer.trainable = False` is to freeze the layer, so the layer will use
    stored moving `var` and `mean` in the "inference mode", and both `gama`
    and `beta` will not be updated !
    """
    def call(self, x, training=False):
        if not training:
            training = tf.constant(False)
        training = tf.logical_and(training, self.trainable)
        return super().call(x, training)


下面来看一下卷积层的实现

#卷积层
def convolutional(input_layer, filters_shape, downsample=False, activate=True, bn=True):
    if downsample:
        #下采样,主要功能是将输入的高宽缩小2倍,比如高宽[416,416] => 高宽[208,208]
        input_layer = tf.keras.layers.ZeroPadding2D(((1, 0), (1, 0)))(input_layer)
        padding = 'valid'
        strides = 2
    else:
      #不是下采样的话,高宽保持不变,[416,416] => [416,416]
        strides = 1
        padding = 'same'

    conv = tf.keras.layers.Conv2D(filters=filters_shape[-1], kernel_size = filters_shape[0], strides=strides, padding=padding,
                                  use_bias=not bn, kernel_regularizer=tf.keras.regularizers.l2(0.0005),
                                  kernel_initializer=tf.random_normal_initializer(stddev=0.01),
                                  bias_initializer=tf.constant_initializer(0.))(input_layer)

    if bn: conv = BatchNormalization()(conv)
    if activate == True: conv = tf.nn.leaky_relu(conv, alpha=0.1)

    return conv

说明一下,tf.keras.layers.ZeroPadding2D是给输入的高宽上下左右填充0,padding=((top_pad, bottom_pad), (left_pad, right_pad))。

卷积层有一个特性:strides = 1并且padding = 'same'的时候,输入的高宽和输出的高宽相同。如果padding = 'valid'的时候,输出的高宽 = (输入的高宽+填充的数目-卷积核的大小)/ 卷积核的步长 + 1。

比如上面的代码中downsample=True的时候,假设输入的图片为[bs,416,416,3],卷积核的数目为32,那么根据公式,输出的图片高宽为(416 + 1 - 3) /2 + 1 = 208,那么输出的图片为[bs,208,208,32]。


下面看一下残差网络的代码,残差网络的功能主要是能够防止梯度弥散现象的出现,使用了残差网络,就可以训练比较深的神经网络。

# 残差网络
def residual_block(input_layer, input_channel, filter_num1, filter_num2):
    short_cut = input_layer
    conv = convolutional(input_layer, filters_shape=(1, 1, input_channel, filter_num1))
    conv = convolutional(conv       , filters_shape=(3, 3, filter_num1,   filter_num2))

    residual_output = short_cut + conv
    return residual_output

通过上面的代码可以看出,残差网络中包含了2个卷积层,并且这2个卷积层并不改变输入图片的大小,所以代码中short_cut和conv的shape是一样的,shape相同的两个张量是可以直接相加的,于是就可以得到残差网络的输出residual_output。



下面看一下上采样操作,在tensorflow中,上采样操作可以通过转置卷积来实现,但是那样会引入训练参数。这里采用的方法比较简单,直接使用tf.image.resize方法将输入图片的尺寸放大2倍。

def upsample(input_layer):
    return tf.image.resize(input_layer, (input_layer.shape[1] * 2, input_layer.shape[2] * 2), method='nearest')



darknet53和卷积网络、残差模块的代码解读到这里就结束了,在下一篇中,我们接着来分析yolo v3的代码。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容