位姿(pose)和变换矩阵(transformation matrix)

理解坐标系之间的转换关系很重要。对于刚体变换矩阵,搞机器人的朋友肯定不陌生,它一般如下表示
\mathbf{T}_{1}^2 = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}
其中\mathbf{t}是位移而\mathbf{R}是旋转。它的物理意义或者说作用是什么呢?这个矩阵的作用就是,给出一个坐标系下的点的坐标,乘上这个矩阵,你就可以得到它在另一个坐标系下的坐标。比如说我目前这个矩阵的作用是把位于坐标系2下的点的坐标'转移'到坐标系1下。假设某个点在坐标系2下的位置为\mathbf{p}_2,那么我们可以得到它在坐标系1下的位置
\mathbf{p}_1 = \mathbf{T}_{1}^2 \mathbf{p}_2
假设我们知道一个坐标系3下的点\mathbf{p}_3,坐标系3和2的关系为\mathbf{T}_{2}^3,那么我们就可以用下式
\mathbf{p}_1 = \mathbf{T}_{1}^2 \mathbf{T}_{2}^3 \mathbf{p}_3
来后去\mathbf{p}_3在坐标系1下的位置。注意点的坐标是齐次坐标,即比它的自由度多一维且最后一维为1。比如2维坐标系下的某点坐标是(x,y)^T,那么它的齐次坐标就是(x,y,1)^T(这个T是转置,行向量转为列向量)。
这儿一个比较好的记忆方法就是要转换一个点的坐标到不同的坐标系,点总是在右侧,矩阵总是左乘(貌似有过右乘的,但在我接触过的几个机器人应用中还没见过)。上面那种写法有个方便之处就是方便直观,比如这个式子你可以看到\mathbf{T}_{1}^2 \mathbf{p}_2\mathbf{p}右下角的2和\mathbf{T}_{1}^2右上角的2“抵消”,剩下的就只有1了,你能很直观地看出把\mathbf{T}_{1}^2右乘到\mathbf{p}_2会得到它在坐标系1下的坐标。
如果一个机器人有多个传感器,那么就会涉及到很重要的传感器之间的变换矩阵的测量,称之为外参(extrinsic parameter)。你最终得到的矩阵一定要搞清楚是那个传感器的坐标到另一个的,别弄反了。
我们说机器人位姿的时候也是通过一个位置和旋转来定义,比如SLAM系统(见我的SLAM介绍或者其他的)如果给出某时刻机器人的位置是\mathbf{t},方向是\mathbf{R},我们也可以写成
\mathbf{T} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}
那么这个\mathbf{T}其实也表示的是两个坐标系之间的变换,哪两个?机器人自身的坐标系(body frame)到世界坐标系的,即我们这个\mathbf{T}实际就是\mathbf{T}_W^BB表示body frame,W表示世界坐标系。这个body frame可能是基于机器人身上某个传感器比如相机或者某个固定的点。
很多代码或者文献中对于坐标转换矩阵也这么记\mathbf{T}_{1}^2记为 \mathbf{T} \underline{}1\underline{}2,甚至\mathbf{T}_{1}^2表示从1坐标系到2坐标系的。具体一定要看文献中是怎么说的。比如下面这个链接是关于SLAM的一个数据集的
https://www.eth3d.net/slam_documentation
你可以看到在extrinsics_1_2.txt的位置它很明显地写到这个txt文件里记录的矩阵的作用A 3D point can be transformed from camera 2 to camera 1 by homogeneously multiplying it with this matrix from the right.很多论文不会写这么详细,但是一般(目前没看到例外)说了某个矩阵是"A coordinate to B coordinate"类似话的,就表示A坐标系下的点乘以该矩阵可以得到点在B坐标下的位置。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342