两个文本相似度算法实现和对比

背景

最近做一个爬虫相关的项目,需要排除掉一些相似的链接,比如分页控件里上一页,下一页等等没什么用的链接.

编辑距离算法

编辑距离,又称Levenshtein距离(莱文斯坦距离也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

这个概念是由俄罗斯科学家Vladimir Levenshtein在1965年提出来的,所以也叫 Levenshtein 距离。它可以用来做DNA分析,拼字检测,抄袭识别等等。总是比较相似的,或多或少我们可以考虑编辑距离。

如果你去搜索编辑距离算法的话可能会看到下面的例子

如果str1=”ivan”,str2=”ivan”,那么经过计算后等于 0。没有经过转换。相似度=1-0/Math.Max(str1.length,str2.length)=1

如果str1=”ivan1”,str2=”ivan2”,那么经过计算后等于1。str1的”1”转换”2”,转换了一个字符,所以距离是1,相似度=1-1/Math.Max(str1.length,str2.length)=0.8

注意算法中的1,其实是固定的值.我就是因为这个值总是算不对走了一些弯路.还有一些文章中介绍算法的时候会用矩阵计算.但是我数学功底很差,所以用了另一种方式实现.

通过算法描述中可以知道,字符串的编辑操作可以是插入,删除,修改.这三个方式的编辑操作,操作数都记为1.那么我的实现中,其实是移除了插入和删除的两个操作,全部是修改操作.实现如下,有什么问题的话还请指出.谢谢!

public static int Levenshtein(string str1, string str2)
{
    var maxLen = Math.Max(str1.Length, str2.Length);

    var tmp1 = str1.PadRight(maxLen);
    var tmp2 = str2.PadRight(maxLen);

    var interval = 0.0f;
    for (int i = 0; i < maxLen; i++)
    {
        if (tmp1[i] != tmp2[i])
        {
            interval += 1;
        }
    }

    return Convert.ToInt32((1 - interval / maxLen) * 100);
}

杰卡德相似系数

Jaccard index, 又称为Jaccard相似系数(Jaccard similarity coefficient)用于比较有限样本集之间的相似性与差异性。Jaccard系数值越大,样本相似度越高。

给定两个集合A,B,Jaccard 系数定义为A与B交集的大小与A与B并集的大小的比值

这个算法还是比较容易理解的,其实就是计算两个字符串中字符的交集和并集的比值.在实际使用时两个长度不相同的链接相似度过高的问题,而且在比对url这种场景下反斜线对于相似度的判断还是有一些影响的.经过简单的修改实现的代码如下

public static int Jaccard(string str1, string str2)
{
    var tmp1 = Regex.Replace(str1, "/", "");
    var tmp2 = Regex.Replace(str2, "/", "");
    var intersect = tmp1.Intersect(tmp2).Count();
    var union = tmp1.Union(tmp2).Count();
    var abs = Math.Abs(tmp2.Length - tmp1.Length);
    return Convert.ToInt32((double)intersect / (union + abs) * 100);
}

对比

分别使用两个算法计算以下两个网址的相似度

https://news.cnblogs.com/n/597903/
https://news.cnblogs.com/n/597947/

结果如下

算法 相似度
Jaccard 86%
Levenshtein 94%

延展

通过相似度算法似乎也可以实现爬虫中只抓取列表页中的内容链接

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容