基于迭代单元的恢复余数开方器
基本算法
该开方器的算法与“手算”(以前并不知道开方还有这种手算的方法)算法相似,使用迭代解决,文字描述如下
- 将0为余数的初值
a
,0作为结果初值b
- 将被开方数前两位
{I(2m + 1),I(2m)}
取出,与01比较大小。若前两位大,则{I(2m + 1),I(2m)} - 01
为输出余数(a(m)
),输出结果1(b(m)
),否则{I(2m + 1),I(2m)}
为输出余数(a(m)
),输出结果0(b(m)
) - 将被开方数的从高位数第3,4位
{I(2m - 1),I(2m - 2)}
取出,比较{a(m),I(2m - 1),I(2m - 2)}
和{b(m),2'b01}
的大小,若前一项大,则输出余数a(m - 1)
为前一项减后一项,输出结果b(m - 1)
为{b(m),1}
;否则,输出余数为前一项(直接输出),输出结果b(m - 1)
为{b(m),0}
- ...
- 直到计算完被开方数结束
迭代单元
算法
迭代单元的算法比较简单,描述如下:
- 组合输入余数和当前开方数的两位
{b,I(i),I(i - 1)}
,组合输入结果和01为{a,2'b01}
- 比较大小,若组合余数大则输出余数为组合余数减去组合结果,输出结果
{a,1}
;否则余数输出组合余数,结果输出{a,0}
RTL代码
module square_cell #(
parameter WIDTH = 4,
parameter STEP = 0
)(
input clk, // Clock
input rst_n, // Asynchronous reset active low
input [2 * WIDTH - 1:0]radicand,
input [WIDTH - 1:0]last_dout,
input [2 * WIDTH - 1:0]remainder_din,
output reg [WIDTH - 1:0]this_dout,
output reg [2 * WIDTH - 1:0]remainder_dout
);
wire [2 * WIDTH - 1:0]target_data = {remainder_din[2 * WIDTH - 3:0],radicand[2 * STEP +:2]};
wire [2 * WIDTH - 1:0]try_data = {last_dout,2'b01};
always @(posedge clk or negedge rst_n) begin
if(~rst_n) begin
{this_dout,remainder_dout} <= 'b0;
end else begin
if(target_data >= try_data) begin
this_dout <= {last_dout[WIDTH - 2:0],1'b1};
remainder_dout <= target_data - try_data;
end else begin
this_dout <= {last_dout[WIDTH - 2:0],1'b0};
remainder_dout <= target_data;
end
end
end
endmodule
顶层与Testbench
顶层单元
module square_extractor #(
parameter WIDTH = 4
)(
input clk, // Clock
input rst_n, // Asynchronous reset active low
input [2 * WIDTH - 1:0]radicand,
output [WIDTH - 1:0]dout,
output [2 * WIDTH - 1:0]remainder
);
genvar i;
generate
for (i = WIDTH - 1; i >= 0; i = i - 1) begin:square
wire [2 * WIDTH - 1:0]remainder_dout,remainder_din;
wire [WIDTH - 1:0]this_dout,last_dout;
if(i == WIDTH - 1) begin
assign remainder_din = 'b0;
assign last_dout = 'b0;
end else begin
assign remainder_din = square[i + 1].remainder_dout;
assign last_dout = square[i + 1].this_dout;
end
square_cell #(
.WIDTH(WIDTH),
.STEP(i)
) u_square_cell (
.clk(clk), // Clock
.rst_n(rst_n), // Asynchronous reset active low
.radicand(radicand),
.last_dout(last_dout),
.remainder_din(remainder_din),
.this_dout(this_dout),
.remainder_dout(remainder_dout)
);
end
endgenerate
assign dout = square[0].this_dout;
assign remainder = square[0].remainder_dout;
endmodule
TestBench
Testbench输入随机的输入后,等待完成,完成后取结果和余数看是否能恢复出正确的输入
module tb_square (
);
parameter WIDTH = 4;
logic clk; // Clock
logic rst_n; // Asynchronous reset active low
logic [2 * WIDTH - 1:0]radicand;
logic [WIDTH - 1:0]dout;
logic [2 * WIDTH - 1:0]remainder;
square_extractor #(
.WIDTH(WIDTH)
) dut (
.clk(clk), // Clock
.rst_n(rst_n), // Asynchronous reset active low
.radicand(radicand),
.dout(dout),
.remainder(remainder)
);
initial begin
clk = 0;
forever begin
#50 clk = ~clk;
end
end
initial begin
rst_n = 1'b1;
#5 rst_n = 1'b0;
#10 rst_n = 1'b1;
end
logic [2 * WIDTH - 1:0]act;
logic [2 * WIDTH - 1:0]dout_ex;
initial begin
radicand = 'b0;
forever begin
@(negedge clk);
radicand = (2 * WIDTH)'($urandom_range(0,2 ** (2 * WIDTH)));
repeat(4 * WIDTH) begin
@(negedge clk);
end
dout_ex = '{dout};
act = dout_ex * dout_ex + remainder;
if(act != radicand) begin
$stop;
end
end
end
endmodule