4. Median of Two Sorted Arrays

题目描述:给两个有序数组,找出这些数的中位数。要求复杂度O(log (m+n))。

分析:一般化的问题是找所有数中第K大的数。可以根据归并排序中merge的思路合并两个数组在取第K大的值,复杂度O(m + n)。方法一在这个思路上改进一点,不排序而只设计数器记下当前已找到第x大的数,复杂度仍然是O(m + n)。方法二根据排序特性利用二分来解决,每次可删除k/2的元素,方法三是其非递归找中位数版,复杂度都是O(log (m+n))。

方法一:时空复杂度都是O(m + n),还是可以过OJ。

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {

        int l1 = nums1.size(), l2 = nums2.size();
        int cnt = l1 + l2, mid = cnt / 2;
        int e = !(cnt % 2);          //设标志总个数是否为偶数使两种情况统一处理,e == 1为偶数,返回(v[mid] + v[mid - e]) / 2.0; e == 0为奇数,返回(v[mid] + v[mid - e]) / 2.0。

        if (l1 == 0) return (nums2[mid] + nums2[mid - e]) / 2.0;
        if (l2 == 0) return (nums1[mid] + nums1[mid - e]) / 2.0;
        
        vector<int> v;
        int i = 0, j = 0, k;
        for (k = 0; k <= mid; k ++)
        {
            //错误处1,i >= l可能导致访问过界,设为最大整数值即可
            int a = i < l1? nums1[i] : INT_MAX;
            int b = j < l2? nums2[j] : INT_MAX;
            if (a < b)
                v.push_back(nums1[i ++]);     //错误处2,不能用下标v[k++]在尾部追加赋值
            else 
                v.push_back(nums2[j ++]);
        }

        return (v[mid] + v[mid - e]) / 2.0;
    }
};

出现错误“reference binding to null pointer of type 'value_type'”的原因见代码注释1 、 2两处。主要是vector与数组的区别,动态分配内存所以不能用下标方式追加数。

方法二:通用的用分治法找第K大的数。设l = nums.size()可发现如下规律:

  • 若l % 2 == 1,数组中位数 = 第 (l + 1) / 2 大的数 = 第(l + 2) / 2大数 = (第 (l + 1) / 2 大的数 + 第(l + 2) / 2大数 )/ 2
  • 若l % 2 == 0,数组中位数 = (第 (l + 1) / 2 大的数 + 第(l + 2) / 2大数 )/ 2
class Solution {
public:  
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {  
        int l1 = nums1.size(), l2 = nums2.size();
        //调用查找第K大函数,不是下标
        return (findKth(nums1, nums2, (l1 + l2 + 1) / 2) + findKth(nums1, nums2, (l1 + l2 + 2) / 2)) / 2.0;
    }  
    
    int findKth(vector<int> nums1, vector<int> nums2, int k)
    {
        int l1 = nums1.size(), l2 = nums2.size();
        //固定nums1的长度较短,减少判断情况
        if (l1 > l2) return findKth(nums2, nums1, k);
        if (l1 == 0) return nums2[k - 1];
        if (k == 1) return min(nums1[0], nums2[0]);

        //统一数组长度小于k / 2的情况。
        int i = min(l1, k/2), j = min(l2, k / 2);
        //nums2的前j - 1(不超过k / 2)个数都是所有数的前k / 2小的数中的元素,可排除
        if (nums1[i - 1] > nums2[j - 1])
            return findKth(nums1, vector<int>(nums2.begin() + j, nums2.end()), k - j);       //nums2的前j个数一定在k之前,所以在剩下的数中找第k - j大的数
        else
            return findKth(vector<int>(nums1.begin() + i, nums1.end()), nums2, k - i);
        
        //return 0;
    }
};

方法三:设l = nums.size()可发现如下规律:

  • 若l % 2 == 1,数组中位数 = nums[l / 2] = nums[(l - 1) / 2] = (nums[l / 2] + nums[(l - 1) / 2])/ 2
  • 若l % 2 == 0,数组中位数 = (nums[l / 2] + nums[(l - 1) / 2])/ 2
class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int len1 = nums1.size(), len2 = nums2.size();
        //保证nums1最短
        if (len1 > len2)
            return findMedianSortedArrays(nums2, nums1);
        if (len1 == 0)
            return (nums2[(len2 - 1) / 2] + nums2[len2 / 2]) / 2.0;
        
        int l = 0, r = len1 * 2;     //nums1较短,故中位数一定在len1及其后
        int l1, l2, r1, r2;
        while(l <= r)
        {
            int mid1 = (l + r) / 2;           //第一次分mid1 = len1
            int mid2 = len1 + len2 - mid1;         /第一次分mid2 = len2
            //mid1 = 0 —— 数组1整体都比中值大,l1 > r2,中值在2中 
            l1 = (mid1 == 0)? INT_MIN : nums1[(mid1 - 1) / 2];                //第一次割一定在nums1的中位数上
            r1 = (mid1 == 2 * len1)? INT_MAX : nums1[mid1 / 2];

            //mid2 = 0 —— 数组2整体都比中值大,l2 > r1,中值在1中 
            l2 = (mid2 == 0)? INT_MIN : nums2[(mid2 - 1) / 2];                 //第一次割一定在nums2的中位数上
            r2 = (mid2 == 2 * len2)? INT_MAX : nums2[mid2 / 2];
            
            if(l1 > r2)        //说明中位数在数组一的更前半部或数组二的更后半部,故减小mid1,增大mid2。说明数组一的后半部不用找了
                r = mid1 - 1;
            else if(l2 > r1)          //说明中位数在数组二的更前半部或数组一的更后半部,故减小mid2,增大mid1。说明数组一的前半部不用找了
                l = mid1 + 1;
            else               //l1 < r2 && l2 < r1,又因为找的是中位数,故两个割分别在两序列中间。说明Max(l1, l2)就是中位数。
                break;
        }
        //当两数组数字总个数为奇数时,割将个数为奇数的那个数组的中位数分为两个,故max(l1, l2) =  min(r1, r2)
        return (max(l1, l2)+ min(r1, r2))/2.0;
    }
};
参考:

方法三图示步骤分解

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,802评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,109评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,683评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,458评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,452评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,505评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,901评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,550评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,763评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,556评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,629评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,330评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,898评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,897评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,140评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,807评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,339评论 2 342

推荐阅读更多精彩内容