CAP理论 & Redis架构

CAP的定义

Consistency (一致性):

“all nodes see the same data at the same time”,即更新操作成功并返回客户端后,所有节点在同一时间的数据完全一致,这就是分布式的一致性。一致性的问题在并发系统中不可避免,对于客户端来说,一致性指的是并发访问时更新过的数据如何获取的问题。从服务端来看,则是更新如何复制分布到整个系统,以保证数据最终一致。

Availability (可用性):

可用性指“Reads and writes always succeed”,即服务一直可用,而且是正常响应时间。好的可用性主要是指系统能够很好的为用户服务,不出现用户操作失败或者访问超时等用户体验不好的情况。

Partition Tolerance (分区容错性):

即分布式系统在遇到某节点或网络分区故障的时候,仍然能够对外提供满足一致性或可用性的服务。

分区容错性要求能够使应用虽然是一个分布式系统,而看上去却好像是在一个可以运转正常的整体。比如现在的分布式系统中有某一个或者几个机器宕掉了,其他剩下的机器还能够正常运转满足系统需求,对于用户而言并没有什么体验上的影响。

CAP理论

CAP理论提出就是针对分布式数据库环境的,所以,P这个属性是必须具备的。

P就是在分布式环境中,由于网络的问题可能导致某个节点和其它节点失去联系,这时候就形成了P(partition),也就是由于网络问题,将系统的成员隔离成了2个区域,互相无法知道对方的状态,这在分布式环境下是非常常见的。

因为P是必须的,那么我们需要选择的就是A和C。

大家知道,在分布式环境下,为了保证系统可用性,通常都采取了复制的方式,避免一个节点损坏,导致系统不可用。那么就出现了每个节点上的数据出现了很多个副本的情况,而数据从一个节点复制到另外的节点时需要时间和要求网络畅通的,所以,当P发生时,也就是无法向某个节点复制数据时,这时候你有两个选择:

选择可用性 A(Availability),此时,那个失去联系的节点依然可以向系统提供服务,不过它的数据就不能保证是同步的了(失去了C属性)。

选择一致性C(Consistency),为了保证数据库的一致性,我们必须等待失去联系的节点恢复过来,在这个过程中,那个节点是不允许对外提供服务的,这时候系统处于不可用状态(失去了A属性)。

最常见的例子是读写分离,某个节点负责写入数据,然后将数据同步到其它节点,其它节点提供读取的服务,当两个节点出现通信问题时,你就面临着选择A(继续提供服务,但是数据不保证准确),C(用户处于等待状态,一直等到数据同步完成)。

---------------------

Redis架构

在单机版的Redis中,每个Master之间是没有任何通信的,所以我们一般在Jedis客户端或者Codis这样的代理中做Pre-sharding。按照CAP理论来说,单机版的Redis属于保证CP(Consistency & Partition-Tolerancy)而牺牲A(Availability),也就说Redis能够保证所有用户看到相同的数据(一致性,因为Redis不自动冗余数据)和网络通信出问题时,暂时隔离开的子系统能继续运行(分区容忍性,因为Master之间没有直接关系,不需要通信),但是不保证某些结点故障时,所有请求都能被响应(可用性,某个Master结点挂了的话,那么它上面分片的数据就无法访问了)。

有了Cluster功能后,Redis从一个单纯的NoSQL内存数据库变成了分布式NoSQL数据库,CAP模型也从CP变成了AP。也就是说,通过自动分片和冗余数据,Redis具有了真正的分布式能力,某个结点挂了的话,因为数据在其他结点上有备份,所以其他结点顶上来就可以继续提供服务,保证了Availability。然而,也正因为这一点,Redis无法保证曾经的强一致性了。这也是CAP理论要求的,三者只能取其二。

---------------------

在网上看到一个队CAP讲解最深入浅出的译文:

https://blog.csdn.net/dc_726/article/details/42784237

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容