Javascript是一种单线程的语言,所有的代码必须按照所谓的“自上而下”的顺序来执行。本特性带来的问题是,一些将来的、未知的操作,必须异步实现。本文将讨论一个比较常见的异步解决方案——Promise。
一 Promise解决的问题
当一个异步任务的执行需要依赖另一个异步任务的结果时,我们一般会将两个异步任务嵌套起来,这种情况发生一两次还可以忍,但是发生很多次之后 , 会出现回调地狱问题,导致代码层层嵌套,环环相扣,很明显,逻辑稍微复杂一些,这样的程序就会变得难以维护。
对于这种情况,Promise的标准化,一定程度上解决了JavaScript的流程操作问题。
二 Promise的基本用法
现代浏览器都已经实现对promise的支持, 那么,我们可以由此得到一个Promise构造函数。
根据Promise构造函数,将新建一个Promise的实例
var _promise = new Promise(function(resolve, reject){
setTimeout(function(){
var rand = Math.random();
if(rand<0.5){
resolve("resolve" + rand);
}else{
reject("reject" + rand);
}
},1000);
});
由上所示,Promise的构造函数接收一个函数作为参数,该函数接受两个额外的函数,resolve和reject,这两个函数分别代表将当前Promise置为fulfilled(解决)和rejected(拒绝)两个状态。Promise正是通过这两个状态来控制异步操作的结果。接下来我们将讨论Promise的用法,实际上Promise上的实例_promise是一个对象,不是一个函数。在声明的时候,Promise传递的参数函数会立即执行,因此Promise使用的正确姿势是在其外层再包裹一层函数。
var run = function(){
var _promise = new Promise(function(resolve, reject){
setTimeout(function(){
var rand = Math.random();
if(rand<0.5){
resolve("resolve" + rand);
}else{
reject("reject" + rand);
}
},1000);
});
return _promise;
}
run();
对异步操作结果的处理
每个Promise的实例对象,都有一个then的方法,这个方法就是用来处理之前各种异步逻辑的结果。
run().then(function(data){
console.log(data);
});
Promise的用处,实际上是在于多重异步操作相互依赖的情况下,对于逻辑流程的控制。Promise正是通过对两种状态的控制,以此来解决流程的控制。请看如下代码:
run().then(function(data){
//处理resolve的代码
cosnole.log("Promise被置为resolve",data);
},function(data){
//处理reject的代码
cosnole.log("程序被置为了reject",data);
})
如果异步操作获得了我们想要的结果,那我们将调用resolve函数,在then的第一个作为参数的匿名函数中可以获取数据,如果我们得到了错误的结果,调用reject函数,在then函数的第二个作为参数的匿名函数中获取错误处理数据。 这样,一个次完整的Promise调用就结束了。对于Promise的then()方法,then总是会返回一个Promise实例,因此你可以一直调用then,形如run().then().then().then().then().then()..... 在一个then()方法调用异步处理成功的状态时,你既可以return一个确定的“值”,也可以再次返回一个Promise实例,当返回的是一个确切的值的时候,then会将这个确切的值传入一个默认的Promise实例,并且这个Promise实例会立即置为fulfilled状态,以供接下来的then方法里使用。如下所示:
run().then(function(data){
console.log("第一次",data);
return data;
}).then(function(data){
console.log("第二次",data);
return data;
}).then(function(data){
console.log("第三次",data);
return data;
});
/* 异步处理成功的打印结果:
第一次 resolve0.49040459200760167d.js:18
第二次 resolve0.49040459200760167d.js:21
第三次 resolve0.49040459200760167
由此可知then方法可以无限调用下去。
*/
根据这个特性,我们就可以将相互依赖的多个异步逻辑,进行比较顺序的管理 , 解决地狱回调的问题。
下面举一个拥有3个异步操作的例子。
//第一个异步任务
function run_a(){
return new Promise(function(resolve, reject){
//假设已经进行了异步操作,并且获得了数据
resolve("step1");
});
}
//第二个异步任务
function run_b(data_a){
return new Promise(function(resolve, reject){
//假设已经进行了异步操作,并且获得了数据
console.log(data_a);
resolve("step2");
});
}
//第三个异步任务
function run_c(data_b){
return new Promise(function(resolve, reject){
//假设已经进行了异步操作,并且获得了数据
console.log(data_b);
resolve("step3");
});
}
//连续调用
run_a().then(function(data){
return run_b(data);
}).then(function(data){
return run_c(data);
}).then(function(data){
console.log(data);
});
/*运行结果
step1
step2
step3
*/
三 异步操作拒绝及中断调用链
前文提到过,then方法可以接收两个匿名函数作为参数,第一个参数是Promise置为fulfilled状态后的回调,第二个是置为rejected状态的回调。在很多情况下,如果连续的几个异步任务,其中某个异步任务处理失败,那么接下来的几个任务很大程度上就不需要继续处理了,那么我们该如何终止then的调用链呢?在Promsie的实例上,除了then方法外,还有一个catch方法,catch方法的具体作用,我们沿用上面的代码,将run_a()改造一下来看:
//修改run_a的一步操作可能存在拒绝状态
function run_a(){
return new Promise(function(resolve, reject){
setTimeout(function(){
if(Math.random()>.5){
resolve("step1");
}else{
reject("error");
}
},1000);
});
}
//这样做不会中断
run_a().then(function(data){
return run_b(data);
},function(data){
//如果是这样处理rejected状态,并不会中断调用链
return data;
}).then(function(data){
return run_c(data);
}).then(function(data){
console.log(data);
});
//在调用链的末尾加上catch方法,当某个环节的Promise的异步处理出错时,将中断其后的调用,直接跳到最后的catch
run_a().then(function(data){
return run_b(data);
}).then(function(data){
return run_c(data);
}).then(function(data){
console.log(data);
}).catch(function(e){
//rejected的状态将直接跳到catch里,剩下的调用不会再继续
console.log(e);
});
以上代码简单描述了如何中断链式调用,值得注意的是,catch方法还有try catch的作用,也就是说,then里面的逻辑代码如果出现了错误,并不会在控制台抛出,而是会直接有catch捕获。