数据采集02

在数据采集阶段主要工作是全面了解产品和用户。

在数据加工阶段,主要工作是对用户和物品分门别类。

在数据决策阶段,主要工作是驱动分发方案和产品优化,这也是搜索和推荐等产品的工程和算法能力输出阶段

在效用评价阶段,我们的主要工作是评估流量分发的效果并形成数据反馈。

数据采集流程

CioPOWFpVLWAdpN3AAA6f8wpOYY138.png

在数据采集之前首要工作是数据需求梳理、埋点规范构建、埋点位置梳理。

数据需求梳理

  • 步骤一:确认事件与变量

事件指的是需要分析的数据来源,最终它是一个结果性指标,比如支付成功。

而变量指的是事件的维度或属性,比如用户性别、商品的种类。

这里可以将事件视为产品中的操作,例如加入购物车、支付成功,然后将变量视为描述事件的属性,比如不同商品的加购次数中,商品名称就是变量。

特殊说明:如果从不同的角度定位一个问题,事件和变量都会发生改变,这就要求我们基于数据需求,找到事件与变量之间搭配的最优解。

  • 步骤二:明确事件的触发时机

在这个过程中需要思考什么时候才是记录事件的合理时机,因为不同的时机其分享成功率也不一样,同时不同的触发时机将带来不同的数据口径。例如分享成功事件面临用户点击微信发生分享动作、用户分享后跳转到相应页面这 2 个时机。因此,数据使用者需要明确事件的触发时机。

时机的选择没有对错之分,我们根据具体的业务需求来制定即可。

  • 步骤三:明确实施优先级

在实际业务中,业务部门必须基于业务指标明确实施埋点的优先级,因为开发部门不可能一次性完成大量事件的埋点。比如电商业务中,我们应该优先实施购买流程这个关键事件,与此冲突的其他事件都应该往后排序。

而且在实际业务中,我们往往需要考虑技术实现成本。

如果技术实现成本不一致,我们应该优先落实能够最快落地的,以确保技术的准确性,比如有的埋点需要跨越多个接口;而如果技术实现成本相同则应该优先实施业务数据价值更高的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容