什么是二叉树?
二叉树是 n (n >= 0)个结构的有限集合,如果集合为空集(称为空二叉树),或者有一个根节点和两棵互不相交的、分别称为根节点的左子树和右子树的二叉树组成。
什么是满二叉树?
在一棵二叉树中,如果所有的分支节点都存在左子树和右子树,并且所有叶子都在同一层面上,这样的二叉树成为满二叉树。
满二叉树的特点
(1) 满二叉树的叶子只能出现在最下一层,出现在其它层就不可能达成平衡。
(2) 非叶子节点的度一定是2。
(3) 在同样深度的热茶树中,满二叉树的节点个数最多,叶子数最多。
什么是完全二叉树?
对于一棵具有 n 个节点的二叉树按层序编号,如果编号为 i ( 1<= i <= n)的节点与同样深度的满二叉树中编号为 i 的节点在二叉树中位置完全相同,则这棵二叉树成为完全二叉树。
完全二叉树的特点
(1) 完全二叉树的叶子节点只能出现在最下面的两层.
(2) 最下层的叶子一定集中在左部的连续位置.
(3) 倒数二层,若有叶子节点,则一定在右部的连续位置
(4) 不存在只有右子树的情况.
(5) 同样结点书的二叉树,完全二叉树的深度最小.
二叉搜索树
如果我们给二叉树加一个额外的条件,就可以得到一种被称作二叉搜索树(binary search tree)的特殊二叉树。
二叉搜索树要求:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。
定义二叉树的节点类
public class Node {
int data; //节点数据
Node leftChild; //左子节点的引用
Node rightChild; //右子节点的引用
boolean isDelete;//表示节点是否被删除
public Node(int data){
this.data = data;
}
//打印节点内容
public void display(){
System.out.println(data);
}
}
二叉树的具体方法
public interface Tree {
//查找节点
public Node find(int key);
//插入新节点
public boolean insert(int data);
//中序遍历
public void infixOrder(Node current);
//前序遍历
public void preOrder(Node current);
//后序遍历
public void postOrder(Node current);
//查找最大值
public Node findMax();
//查找最小值
public Node findMin();
//删除节点
public boolean delete(int key);
}
查找节点
查找某个节点,我们必须从根节点开始遍历。
①、查找值比当前节点值大,则搜索右子树;
②、查找值等于当前节点值,停止搜索(终止条件);
③、查找值小于当前节点值,则搜索左子树;
//查找节点
public Node find(int key) {
Node current = root;
while(current != null){
if(current.data > key){//当前值比查找值大,搜索左子树
current = current.leftChild;
}else if(current.data < key){//当前值比查找值小,搜索右子树
current = current.rightChild;
}else{
return current;
}
}
return null;//遍历完整个树没找到,返回null
}
用变量current来保存当前查找的节点,参数key是要查找的值,刚开始查找将根节点赋值到current。接在在while循环中,将要查找的值和current保存的节点进行对比。如果key小于当前节点,则搜索当前节点的左子节点,如果大于,则搜索右子节点,如果等于,则直接返回节点信息。当整个树遍历完全,即current == null,那么说明没找到查找值,返回null。
插入节点
要插入节点,必须先找到插入的位置。与查找操作相似,由于二叉搜索树的特殊性,待插入的节点也需要从根节点开始进行比较,小于根节点则与根节点左子树比较,反之则与右子树比较,直到左子树为空或右子树为空,则插入到相应为空的位置,在比较的过程中要注意保存父节点的信息 及 待插入的位置是父节点的左子树还是右子树,才能插入到正确的位置。
//插入节点
public boolean insert(int data) {
Node newNode = new Node(data);
if(root == null){//当前树为空树,没有任何节点
root = newNode;
return true;
}else{
Node current = root;
Node parentNode = null;
while(current != null){
parentNode = current;
if(current.data > data){//当前值比插入值大,搜索左子节点
current = current.leftChild;
if(current == null){//左子节点为空,直接将新值插入到该节点
parentNode.leftChild = newNode;
return true;
}
}else{
current = current.rightChild;
if(current == null){//右子节点为空,直接将新值插入到该节点
parentNode.rightChild = newNode;
return true;
}
}
}
}
return false;
}
遍历树
遍历树是根据一种特定的顺序访问树的每一个节点。比较常用的有前序遍历,中序遍历和后序遍历。而二叉搜索树最常用的是中序遍历。
①、前序遍历:根节点——》左子树——》右子树
②、中序遍历:左子树——》根节点——》右子树
③、后序遍历:左子树——》右子树——》根节点
二叉树的具体实现
public class BinaryTree implements Tree {
//表示根节点
private Node root;
//查找节点
public Node find(int key) {
Node current = root;
while(current != null){
if(current.data > key){//当前值比查找值大,搜索左子树
current = current.leftChild;
}else if(current.data < key){//当前值比查找值小,搜索右子树
current = current.rightChild;
}else{
return current;
}
}
return null;//遍历完整个树没找到,返回null
}
//插入节点
public boolean insert(int data) {
Node newNode = new Node(data);
if(root == null){//当前树为空树,没有任何节点
root = newNode;
return true;
}else{
Node current = root;
Node parentNode = null;
while(current != null){
parentNode = current;
if(current.data > data){//当前值比插入值大,搜索左子节点
current = current.leftChild;
if(current == null){//左子节点为空,直接将新值插入到该节点
parentNode.leftChild = newNode;
return true;
}
}else{
current = current.rightChild;
if(current == null){//右子节点为空,直接将新值插入到该节点
parentNode.rightChild = newNode;
return true;
}
}
}
}
return false;
}
//中序遍历
public void infixOrder(Node current){
if(current != null){
infixOrder(current.leftChild);
System.out.print(current.data+" ");
infixOrder(current.rightChild);
}
}
//前序遍历
public void preOrder(Node current){
if(current != null){
System.out.print(current.data+" ");
infixOrder(current.leftChild);
infixOrder(current.rightChild);
}
}
//后序遍历
public void postOrder(Node current){
if(current != null){
infixOrder(current.leftChild);
infixOrder(current.rightChild);
System.out.print(current.data+" ");
}
}
//找到最大值
public Node findMax(){
Node current = root;
Node maxNode = current;
while(current != null){
maxNode = current;
current = current.rightChild;
}
return maxNode;
}
//找到最小值
public Node findMin(){
Node current = root;
Node minNode = current;
while(current != null){
minNode = current;
current = current.leftChild;
}
return minNode;
}
@Override
public boolean delete(int key) {
Node current = root;
Node parent = root;
boolean isLeftChild = false;
//查找删除值,找不到直接返回false
while(current.data != key){
parent = current;
if(current.data > key){
isLeftChild = true;
current = current.leftChild;
}else{
isLeftChild = false;
current = current.rightChild;
}
if(current == null){
return false;
}
}
//如果当前节点没有子节点
if(current.leftChild == null && current.rightChild == null){
if(current == root){
root = null;
}else if(isLeftChild){
parent.leftChild = null;
}else{
parent.rightChild = null;
}
return true;
//当前节点有一个子节点,右子节点
}else if(current.leftChild == null && current.rightChild != null){
if(current == root){
root = current.rightChild;
}else if(isLeftChild){
parent.leftChild = current.rightChild;
}else{
parent.rightChild = current.rightChild;
}
return true;
//当前节点有一个子节点,左子节点
}else if(current.leftChild != null && current.rightChild == null){
if(current == root){
root = current.leftChild;
}else if(isLeftChild){
parent.leftChild = current.leftChild;
}else{
parent.rightChild = current.leftChild;
}
return true;
}else{
//当前节点存在两个子节点
Node successor = getSuccessor(current);
if(current == root){
successor = root;
}else if(isLeftChild){
parent.leftChild = successor;
}else{
parent.rightChild = successor;
}
successor.leftChild = current.leftChild;
}
return false;
}
public Node getSuccessor(Node delNode){
Node successorParent = delNode;
Node successor = delNode;
Node current = delNode.rightChild;
while(current != null){
successorParent = successor;
successor = current;
current = current.leftChild;
}
//后继节点不是删除节点的右子节点,将后继节点替换删除节点
if(successor != delNode.rightChild){
successorParent.leftChild = successor.rightChild;
successor.rightChild = delNode.rightChild;
}
return successor;
}
public static void main(String[] args) {
BinaryTree bt = new BinaryTree();
bt.insert(50);
bt.insert(20);
bt.insert(80);
bt.insert(10);
bt.insert(30);
bt.insert(60);
bt.insert(90);
bt.insert(25);
bt.insert(85);
bt.insert(100);
bt.delete(10);//删除没有子节点的节点
bt.delete(30);//删除有一个子节点的节点
bt.delete(80);//删除有两个子节点的节点
System.out.println(bt.findMax().data);
System.out.println(bt.findMin().data);
System.out.println(bt.find(100));
System.out.println(bt.find(200));
}
}