switch(Long)的故事
作为一个java新手在学习java的过程中,机缘巧合,我写了一段这样的代码
Long l = 0L;
switch (l){
...
}
出现了这样的错误:
T.java:5: error: incompatible types: Long cannot be converted to int
switch (l){
学习过程中总会有些不能理解的地方,而我 ^ ^ 选择百度 ^ ^
Java语言规范里是这样说的
switch works with the byte, short, char, and int primitive data types.It also works with enumerated types (discussed in Enum Types), the String class, and a few special classes that wrap certain primitive types: Character, Byte, Short, and Integer .
??? only byte,short,char,int
??? Enum,String,Character,Byte,Short,Integer
嗯?String都能支持,Long居然不支持,为什么没有Long?
不能理解,我们接着 ^ ^ 百度 ^ ^
从"20年前"的Java虚拟机规范里上找到Compile Switch这一节
里面是这样说的:
Compilation of switch statements uses the tableswitch and lookupswitch instructions.The tableswitch instruction is used when the cases of the switch can be efficiently represented as indices into a table of target offsets. The default target of the switch is used if the value of the expression of the switch falls outside the range of valid indices.
编译switch 使用两种指令 tableswitch 和 lookupswitch
当switch内的case值能被表示为一个表中的索引值时,则使用tableswitch.
接着看
The Java Virtual Machine's tableswitch and lookupswitch instructions operate only on int data. Because operations on byte, char, or short values are internally promoted to int, a switch whose expression evaluates to one of those types is compiled as though it evaluated to type int.
tableswitch 和lookupswitch只操作在int数据上,对于byte char short的操作在内部都会提升为int
原来JVM底层提供两种只支持32位大小的偏移量(刚好是int类型的大小)的switch指令 tableswitch
和 lookupswitch
.
所以在java中其实也只实现了byte, short, char, and int的switch,至于他们的包装类型以及Enum,String都是Java编译器给我们的语法糖,甚至于byte,short,char也会在运行时提升为int.
都是语法糖!!那我关心一下实现可以吧 ^ ^ 百度 ^ ^
先看看原始类型的包装类是如何实现switch的.
switch(Integer)
private void integerSwitch()
{
Integer integerS = 0;
switch (integerS){
case 1:
case 0:
case 2:
System.out.println(integerS);
}
}
使用 jad 反编译后:
private void integerSwitch()
{
Integer integer = Integer.valueOf(0);
switch(integer.intValue()){
case 0: // '\0'
case 1: // '\001'
case 2: // '\002'
System.out.println(integer);
break;
}
}
嗯,果然是真的,调用了Integer.intValue()返回原始类型,
等下,怎么顺序感觉怪怪的,说好的1,0,2
,居然给我排了队,
还是用JDK自带的javap,看一眼bytecode吧
0: iconst_0
1: invokestatic #2 // Method java/lang/Integer.valueOf:(I)Ljava/lang/Integer;
4: astore_1
5: aload_1
6: invokevirtual #3 // Method java/lang/Integer.intValue:()I
9: tableswitch { // 0 to 2
0: 36
1: 36
2: 36
default: 43
}
36: getstatic #4 // Field java/lang/System.out:Ljava/io/PrintStream;
39: aload_1
40: invokevirtual #5 // Method java/io/PrintStream.println:(Ljava/lang/Object;)V
43: return
嗯,jad还是可信的,前面Java虚拟机规范提到,当switch内的case值能被表示为一个表中的索引值时,则使用tableswitch
,
看样子是,编译器为我们调整了顺序,似乎它更喜欢tableswitch
,接着看下一个类型。
switch( String )
private void test1()
{
String feiniao = "feiniao";
switch(feiniao){
case "feiniao":
System.out.println("feiniao");
break;
case "FB":
System.out.println("FB");
break;
case "Ea":
System.out.println("Ea");
break;
}
}
使用jad 反编译后:
private void test1()
{
String s = "feiniao";
String s1 = s;
byte byte0 = -1;
switch(s1.hashCode()){
case -972010061:
if(s1.equals("feiniao"))
byte0 = 0;
break;
case 2236:
if(s1.equals("Ea"))
byte0 = 2;
else
if(s1.equals("FB"))
byte0 = 1;
break;
}
switch(byte0){
case 0: // '\0'
System.out.println("feiniao");
break;
case 1: // '\001'
System.out.println("FB");
break;
case 2: // '\002'
System.out.println("Ea");
break;
}
}
- 先来看看这个,使用了新的变量s1,防止并发操作,所造成的结果不可知.
- 然后使用String的hashcode和一个额外的switch,将对于String的switch转换为对临时变量byte0的switch。
- 中间还帮我们处理了"Ea"和"FB"两个字符串hashcode值相同的情况。
- 最终转换成了一个对于变量byte0的
tableswtich
。
哇,这糖为什么可以这么甜那!接着往下看看还有没有更甜的。
switch( Enum )
enum Em {
A,B,C,D,E;
}
private void test2(){
Em em = Em.A;
switch (em){
case A:
System.out.println("A");
break;
case C:
System.out.println("C");
break;
case E:
System.out.println("E");
break;
default:
}
}
使用jad 反编译后:
private void test2()
{
Em em = Em.A;
static class _cls1
{
static final int $SwitchMap$Em[];
static
{
$SwitchMap$Em = new int[Em.values().length];
try
{
$SwitchMap$Em[Em.A.ordinal()] = 1;
}
catch(NoSuchFieldError nosuchfielderror) { }
try
{
$SwitchMap$Em[Em.C.ordinal()] = 2;
}
catch(NoSuchFieldError nosuchfielderror1) { }
try
{
$SwitchMap$Em[Em.E.ordinal()] = 3;
}
catch(NoSuchFieldError nosuchfielderror2) { }
}
}
switch(_cls1.SwitchMap.Em[em.ordinal()])
{
case 1: // '\001'
System.out.println("A");
break;
case 2: // '\002'
System.out.println("C");
break;
case 3: // '\003'
System.out.println("E");
break;
}
}
信息量有点大
首先方法内多了一个类,
然后目录里多了一个名 T$1的类,
switch的东西也不是原先的我们定义的Em,
让我缓缓,,,先用javap看一下bytecode
0: getstatic #9 // Field Em.A:LEm;
3: astore_1
4: getstatic #10 // Field T$1.$SwitchMap$Em:[I
7: aload_1
8: invokevirtual #11 // Method Em.ordinal:()I
11: iaload
12: tableswitch { // 1 to 3
1: 40
2: 51
3: 62
default: 73
}
...
从bytecode可以看到,并没有什么_cls1
类,不过可以看到一个静态常量T$1.$SwitchMap$Em
,目录里的也确实多了T$1.class
这个类。看看这个类是个什么鬼。
static class T$1
{
static final int $SwitchMap$Em[];
static
{
$SwitchMap$Em = new int[Em.values().length];
try
{
$SwitchMap$Em[Em.A.ordinal()] = 1;
}
catch(NoSuchFieldError nosuchfielderror) { }
try
{
$SwitchMap$Em[Em.C.ordinal()] = 2;
}
catch(NoSuchFieldError nosuchfielderror1) { }
try
{
$SwitchMap$Em[Em.E.ordinal()] = 3;
}
catch(NoSuchFieldError nosuchfielderror2) { }
}
}
好像明白了什么!
- 假如不使用这个额外的T$1类,我所想象的代码因该长这样
//常量池里的东西先不管了
0: getstatic #9
3: astore_1
4: aload_1
5: invokevirtual #11 // Method Em.ordinal:()I
9: lookupswitch { // 1 to 3
1: 40
3: 51
5: 62
default: 73
}
...
编译器废了这么大力气,就为了把lookupswitch
替换成tableswitch
?
看来区别就在于 tableswitch
和 lookupswitch
了
这我就很好奇了,让我着回去翻Java虚拟机规范。
tableswitch 和 lookupswitch 的区别?
Where the cases of the switch are sparse, the table representation of the tableswitch instruction becomes inefficient in terms of space. The lookupswitch instruction may be used instead. The lookupswitch instruction pairs int keys (the values of the case labels) with target offsets in a table. When a lookupswitch instruction is executed, the value of the expression of the switch is compared against the keys in the table. If one of the keys matches the value of the expression, execution continues at the associated target offset. If no key matches, execution continues at the default target.
前面提到了,当switch内的case值能被表示为一个表中的索引值时,则使用tableswitch
,
但是,当switch
里的case值非常稀疏的时候,tableswitch
的做法在空间损耗方面表现得非常糟糕,
有道理,所以lookupswitch
的做法是,将case的int值和转跳的偏移量作为一对放在了一个表里,
当lookupswitch
被执行的时候,这switch的表达式的值和这个表里的keys逐一比较,
没有找到则使用默认值,似乎在空间上是省了,不过时间上就慢了。
我们再看一下javac的源码:
// For each case, store its label in an array.
int lo = Integer.MAX_VALUE; // minimum label.
int hi = Integer.MIN_VALUE; // maximum label.
int nlabels = 0; // number of labels.
...
// Determine whether to issue a tableswitch or a lookupswitch
// instruction.
long table_space_cost = 4 + ((long) hi - lo + 1); // words
long table_time_cost = 3; // comparisons
long lookup_space_cost = 3 + 2 * (long) nlabels;
long lookup_time_cost = nlabels;
int opcode =
nlabels > 0 &&
table_space_cost + 3 * table_time_cost <=
lookup_space_cost + 3 * lookup_time_cost
?
tableswitch : lookupswitch;
我可以概括性的说,在最大和最小case的差值不大的且label数偏多的情况下,会选择tableswitch
,
当差值很大而label又数不多的情况下,会选择lookupswitch
。
好奇宝宝时间!
说这么多有什么用呢?作为一名重度强迫症患者加好奇宝宝,我就是想知道,编译器废了这么大劲,两者性能到底能差多少?
从上面的code可以看到tableswitch
的时间复杂度是O(1),lookupswitch
的时间复杂度是O(n),好现在这是我们的假设,让我们看看结果。
首先我们选择使用JMH做我们的微基准测试框架
@State(Scope.Benchmark)
public class SwitchBenchmark {
@Param({"1", "2", "3", "4", "5", "6", "7", "8"})//类似与Junit的 Parameterized
int n;
@Benchmark
public long lookupSwitch() {
return Switch.lookupSwitch(n);
}
@Benchmark
public long tableSwitch() {
return Switch.tableSwitch(n);
}
}
public class Switch {
public Switch() {
}
public static int lookupSwitch(int var0) {
switch(var0) {
case 1:
return 11;
case 2:
return 22;
case 3:
return 33;
case 4:
return 44;
case 5:
return 55;
case 6:
return 66;
case 7:
return 77;
default:
return -1;
}
}
public static int tableSwitch(int var0) {
switch(var0) {
case 1:
return 11;
case 2:
return 22;
case 3:
return 33;
case 4:
return 44;
case 5:
return 55;
case 6:
return 66;
case 7:
return 77;
default:
return -1;
}
}
}
当然我们直接java代码这样写Switch类是没用的,因为这样的lookupSwitch
会被被编译器优化成tableswitch
,
所以我们使用jasmin写
.class public nefk/Switch
.super java/lang/Object
.method public <init>()V
aload_0
invokenonvirtual java/lang/Object/<init>()V
return
.end method
.method public static lookupSwitch(I)I
.limit stack 1
iload_0
lookupswitch
1 : One
2 : Two
3 : Three
4 : Four
5 : Five
6 : Six
7 : Seven
default : Other
One:
bipush 11
ireturn
Two:
bipush 22
ireturn
Three:
bipush 33
ireturn
Four:
bipush 44
ireturn
Five:
bipush 55
ireturn
Six:
bipush 66
ireturn
Seven:
bipush 77
ireturn
Other:
bipush -1
ireturn
.end method
.method public static tableSwitch(I)I
.limit stack 1
iload_0
tableswitch 1
One
Two
Three
Four
Five
Six
Seven
default : Other
One:
bipush 11
ireturn
Two:
bipush 22
ireturn
Three:
bipush 33
ireturn
Four:
bipush 44
ireturn
Five:
bipush 55
ireturn
Six:
bipush 66
ireturn
Seven:
bipush 77
ireturn
Other:
bipush -1
ireturn
.end method
从switch 1 到 switch 8 个迭代测试200次 吞吐量平均值是这样的
Benchmark (n) Mode Cnt Score Error Units
lookupSwitch 1 thrpt 200 323330446.034 ± 2445701.999 ops/s
tableSwitch 1 thrpt 200 319148199.518 ± 2598409.017 ops/s
lookupSwitch 2 thrpt 200 362462418.531 ± 2113632.446 ops/s
tableSwitch 2 thrpt 200 336827136.850 ± 13390837.980 ops/s
lookupSwitch 3 thrpt 200 358321384.210 ± 3603503.904 ops/s
tableSwitch 3 thrpt 200 357352579.969 ± 4501450.687 ops/s
lookupSwitch 4 thrpt 200 401580310.966 ± 4127000.494 ops/s
tableSwitch 4 thrpt 200 376005438.482 ± 14937683.947 ops/s
lookupSwitch 5 thrpt 200 318344827.113 ± 2553139.591 ops/s
tableSwitch 5 thrpt 200 316609397.120 ± 4390158.172 ops/s
lookupSwitch 6 thrpt 200 327729755.563 ± 3328732.069 ops/s
tableSwitch 6 thrpt 200 321749811.593 ± 2651391.425 ops/s
lookupSwitch 7 thrpt 200 361246393.893 ± 4742280.906 ops/s
tableSwitch 7 thrpt 200 358376601.529 ± 3350421.622 ops/s
lookupSwitch 8 thrpt 200 347337820.333 ± 4287812.567 ops/s
tableSwitch 8 thrpt 200 355080497.046 ± 3393523.154 ops/s
预测失败!!!
对与相同的case值tableswitch
和lookupswitch
性能是差不多的,差不多的!
嗯,前面编译器做了那么多,原来结果都是一样的,我只想问一句,大哥你是不是觉得心有点累,
我帮你监督一下你的小弟JIT。
好像被欺骗了
我们先加上两个参数-XX:+UnlockDiagnosticVMOptions -XX:CompileCommand=print,nefk.Switch::*
,看看JIT编译出来的汇编代码
tableswitch
的汇编代码:
# {method} {0x0000000108c4c008} 'tableSwitch' '(I)I' in 'nefk/Switch'
# parm0: rsi = int
# [sp+0x20] (sp of caller)
0x0000000109a49800: sub $0x18,%rsp
0x0000000109a49807: mov %rbp,0x10(%rsp) ;*synchronization entry
; - nefk.Switch::tableSwitch@-1
0x0000000109a4980c: cmp $0x4,%esi
0x0000000109a4980f: je 0x0000000109a49865
0x0000000109a49811: cmp $0x4,%esi
0x0000000109a49814: jg 0x0000000109a49841
0x0000000109a49816: cmp $0x2,%esi
0x0000000109a49819: je 0x0000000109a4983a
0x0000000109a4981b: cmp $0x2,%esi
0x0000000109a4981e: jg 0x0000000109a49833
0x0000000109a49820: cmp $0x1,%esi
0x0000000109a49823: jne 0x0000000109a4982c ;*tableswitch
; - nefk.Switch::tableSwitch@1lookupswitch:
...
lookupswitch
的汇编代码:
# {method} {0x000000010a7b30e8} 'lookupSwitch' '(I)I' in 'nefk/Switch'
# parm0: rsi = int
# [sp+0x20] (sp of caller)
0x000000010d692200: sub $0x18,%rsp
0x000000010d692207: mov %rbp,0x10(%rsp) ;*synchronization entry
; - nefk.Switch::lookupSwitch@-1
0x000000010d69220c: cmp $0x4,%esi
0x000000010d69220f: je 0x000000010d692265
0x000000010d692211: cmp $0x4,%esi
0x000000010d692214: jg 0x000000010d692241
0x000000010d692216: cmp $0x2,%esi
0x000000010d692219: je 0x000000010d69223a
0x000000010d69221b: cmp $0x2,%esi
0x000000010d69221e: jg 0x000000010d692233
0x000000010d692220: cmp $0x1,%esi
0x000000010d692223: jne 0x000000010d69222c ;*lookupswitch
; - nefk.Switch::lookupSwitch@1
...
lookupswitch
和tableswitch
进过JIT优化生成的机器码,居然用得都是二分,
醉了,不是说好tableswitch
的话直接使用跳表吗,感觉自己被欺骗了。
Talk is cheap. Show me the code
看样子什么都不可靠,我们还是直接翻hotspot
的源码吧,在parse2.cpp文件里的create_jump_table方法内,
终于找到了我要的!
bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
...
if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
return false;
if (num_cases > (MaxJumpTableSparseness * num_range))
return false;
...
很明显这个方法被用来创建jump_table
,而关键点就出在这个MinJumpTableSize
我们hg grep -i MinJumpTableSize
搜一下 默认值
src/share/vm/opto/c2_globals.hpp:5806: product_pd(intx, MinJumpTableSize, \
src/cpu/sparc/vm/c2_globals_sparc.hpp:5763:define_pd_global(intx, MinJumpTableSize, 5);
src/cpu/x86/vm/c2_globals_x86.hpp:5763:define_pd_global(intx, MinJumpTableSize, 10);
src/share/vm/adlc/output_h.cpp:5763: fprintf(fp," %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
src/share/vm/opto/parse2.cpp:5763: if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
可以看到在sparc
下是5,在x86
下是10,因为我们的case小于10个,所以跟本没有生成jump_table
。
结论
不论btyecode所用使用的swtich是tableswitch
还是lookupswitch
,JIT会在运行时根据case数量和配置的参数,作出优化。
默认
MinJumpTableSize
为 10 ,case的数量小于这个不会生成jump_table
!默认
MaxJumpTableSize
为 65000 ,case的数量大于这个不会生成jump_table
!默认
MaxJumpTableSparseness
为 5 ,case过于稀疏不会生成jump_table
!最重要的一点是,大多数情况下源码都是最好的文档(除去那些无法直视代码)。
Talk is cheap. Show me the code!
Talk is cheap. Show me the code!!
Talk is cheap. Show me the code!!!
环境信息
- Mac OS
- JDK 1.8.0_151
感谢Lydia
和觉醒
的宝贵建议和辛苦校对。