RDD与算子

什么是RDD

  • RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。

什么是DataFrame

  • DataFrame引入了schema和off-heap
    schema : RDD每一行的数据, 结构都是一样的,这个结构就存储在schema中。 Spark通过schema就能够读懂数据, 因此在通信和IO时就只需要序列化和反序列化数据, 而结构的部分就可以省略了。

什么是DataSet

  • DataSet结合了RDD和DataFrame的优点,并带来的一个新的概念Encoder。
    当序列化数据时,Encoder产生字节码与off-heap进行交互,能够达到按需访问数据的效果,而不用反序列化整个对象。Spark还没有提供自定义Encoder的API,但是未来会加入。


    三者之间转换

RDD的宽依赖和窄依赖

  • 由于RDD是粗粒度的操作数据集,每个Transformation操作都会生成一个新的RDD,所以RDD之间就会形成类似流水线的前后依赖关系;RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。如图所示显示了RDD之间的依赖关系。
  • 窄依赖:是指每个父RDD的一个Partition最多被子RDD的一个Partition所使用,例如map、filter、union等操作都会产生窄依赖;(独生子女)

  • 宽依赖:是指一个父RDD的Partition会被多个子RDD的Partition所使用,例如groupByKey、reduceByKey、sortByKey等操作都会产生宽依赖;(超生)

依赖关系流下面的视图

在spark中,会根据RDD之间的依赖关系将DAG图(有向无环图)划分为不同的阶段,对于窄依赖,由于partition依赖关系的确定性,partition的转换处理就可以在同一个线程里完成,窄依赖就被spark划分到同一个stage中,而对于宽依赖,只能等父RDD shuffle处理完成后,下一个stage才能开始接下来的计算。

因此spark划分stage的整体思路是:从后往前推,遇到宽依赖就断开,划分为一个stage;遇到窄依赖就将这个RDD加入该stage中。因此在图2中RDD C,RDD D,RDD E,RDDF被构建在一个stage中,RDD A被构建在一个单独的Stage中,而RDD B和RDD G又被构建在同一个stage中。

在spark中,Task的类型分为2种:ShuffleMapTask和ResultTask

简单来说,DAG的最后一个阶段会为每个结果的partition生成一个ResultTask,即每个Stage里面的Task的数量是由该Stage中最后一个RDD的Partition的数量所决定的!而其余所有阶段都会生成ShuffleMapTask;之所以称之为ShuffleMapTask是因为它需要将自己的计算结果通过shuffle到下一个stage中;也就是说上图中的stage1和stage2相当于mapreduce中的Mapper,而ResultTask所代表的stage3就相当于mapreduce中的reducer。

在之前动手操作了一个wordcount程序,因此可知,Hadoop中MapReduce操作中的Mapper和Reducer在spark中的基本等量算子是map和reduceByKey;不过区别在于:Hadoop中的MapReduce天生就是排序的;而reduceByKey只是根据Key进行reduce,但spark除了这两个算子还有其他的算子;因此从这个意义上来说,Spark比Hadoop的计算算子更为丰富。

RDD编程API(Transformation和Action)

  • Transformation(转换)

转换 含义
map(func) 返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成
filter(func) 返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成
flatMap(func) 类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)
mapPartitions(func) 类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U]
mapPartitionsWithIndex(func) 类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是(Int, Interator[T]) => Iterator[U]
sample(withReplacement, fraction, seed) 根据fraction指定的比例对数据进行采样,可以选择是否使用随机数进行替换,seed用于指定随机数生成器种子
union(otherDataset) 对源RDD和参数RDD求并集后返回一个新的RDD
intersection(otherDataset) 对源RDD和参数RDD求交集后返回一个新的RDD
distinct([numTasks])) 对源RDD进行去重后返回一个新的RDD
groupByKey([numTasks]) 在一个(K,V)的RDD上调用,返回一个(K, Iterator[V])的RDD
reduceByKey(func, [numTasks]) 在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,与groupByKey类似,reduce任务的个数可以通过第二个可选的参数来设置
aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) 先按分区聚合 再总的聚合 每次要跟初始值交流 例如:aggregateByKey(0)(+,+) 对k/y的RDD进行操作
sortByKey([ascending], [numTasks]) 在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD
sortBy(func,[ascending], [numTasks]) 与sortByKey类似,但是更灵活 第一个参数是根据什么排序 第二个是怎么排序 false倒序 第三个排序后分区数 默认与原RDD一样
join(otherDataset, [numTasks]) 在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD 相当于内连接(求交集)
cogroup(otherDataset, [numTasks]) 在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable<V>,Iterable<W>))类型的RDD
cartesian(otherDataset) 两个RDD的笛卡尔积 的成很多个K/V
pipe(command, [envVars]) 调用外部程序
coalesce(numPartitions) 重新分区 第一个参数是要分多少区,第二个参数是否shuffle 默认false 少分区变多分区 true 多分区变少分区 false
repartition(numPartitions) 重新分区 必须shuffle 参数是要分多少区 少变多
repartitionAndSortWithinPartitions(partitioner) 重新分区+排序 比先分区再排序效率高 对K/V的RDD进行操作
foldByKey(zeroValue)(seqOp) 该函数用于K/V做折叠,合并处理 ,与aggregate类似 第一个括号的参数应用于每个V值 第二括号函数是聚合例如:+
combineByKey 合并相同的key的值 rdd1.combineByKey(x => x, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)
partitionBy(partitioner) 对RDD进行分区 partitioner是分区器 例如new HashPartition(2
cache persist RDD缓存,可以避免重复计算从而减少时间,区别:cache内部调用了persist算子,cache默认就一个缓存级别MEMORY-ONLY ,而persist则可以选择缓存级别
Subtract(rdd) 返回前rdd元素不在后rdd的rdd
leftOuterJoin leftOuterJoin类似于SQL中的左外关联left outer join,返回结果以前面的RDD为主,关联不上的记录为空。只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可。
rightOuterJoin rightOuterJoin类似于SQL中的有外关联right outer join,返回结果以参数中的RDD为主,关联不上的记录为空。只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可
subtractByKey substractByKey和基本转换操作中的subtract类似只不过这里是针对K的,返回在主RDD中出现,并且不在otherRDD中出现的元素
  • Action(动作)

动作 含义
reduce(func) 通过func函数聚集RDD中的所有元素,这个功能必须是课交换且可并联的
collect() 在驱动程序中,以数组的形式返回数据集的所有元素
count() 返回RDD的元素个数
first() 返回RDD的第一个元素(类似于take(1))
take(n) 返回一个由数据集的前n个元素组成的数组
takeSample(withReplacement,num, [seed]) 返回一个数组,该数组由从数据集中随机采样的num个元素组成,可以选择是否用随机数替换不足的部分,seed用于指定随机数生成器种子
takeOrdered(n, [ordering]) *
saveAsTextFile(path) 将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本
saveAsSequenceFile(path) 将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。
saveAsObjectFile(path) *
countByKey() 针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。
foreach(func) 在数据集的每一个元素上,运行函数func进行更新。
aggregate 先对分区进行操作,在总体操作
reduceByKeyLocally *
lookup *
top *
fold *
foreachPartition *

WordCount代码编写

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object SparkWordCountWithScala {
  def main(args: Array[String]): Unit = {

    val conf = new SparkConf()
    /**
      * 如果这个参数不设置,默认认为你运行的是集群模式
      * 如果设置成local代表运行的是local模式
      */
    conf.setMaster("local")
    //设置任务名
    conf.setAppName("WordCount")
    //创建SparkCore的程序入口
    val sc = new SparkContext(conf)
    //读取文件 生成RDD
    val file: RDD[String] = sc.textFile("E:\\hello.txt")
    //把每一行数据按照,分割
    val word: RDD[String] = file.flatMap(_.split(","))
    //让每一个单词都出现一次
    val wordOne: RDD[(String, Int)] = word.map((_,1))
    //单词计数
    val wordCount: RDD[(String, Int)] = wordOne.reduceByKey(_+_)
    //按照单词出现的次数 降序排序
    val sortRdd: RDD[(String, Int)] = wordCount.sortBy(tuple => tuple._2,false)
    //将最终的结果进行保存
    sortRdd.saveAsTextFile("E:\\result")

    sc.stop()
  }
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345