容量限制设计方案

服务通常需要考虑速度和容量限制,增强系统的鲁棒性。

背景

笔者曾负责过某公司内公众号服务开发。公众号接口服务接收到用户的推送请求后会构造公众号消息并写入消息队列,路由服务异步接收到消息后进行消息存储后,再交由推送服务向用户推送消息。基本流程如下图所示:


消息流程.png

消息存储过程:

  1. 路由服务发起消息存储请求,并将消息缓存到本地;
  2. 存储服务成功存储消息后异步发送成功通知;
  3. 路由服务接收到成功通知后从本地缓存获取消息内容后进行后续推送处理;

问题

若存储服务异常,系统会出现什么问题?

  • 路由服务使用local cache临时存储消息。当存储服务异常时,若不加限制,路由服务极有可能导致内存溢出,路由服务不可用;
  • 路由服务发起消息存储请求为异步过程,很有可能会一直消费MQ里的消息,导致存储服务承受更大的服务压力。同时会存在消息可能丢失的风险;

方案

基于信号量实现限制容量的本地缓存。容量大小为信号量个数,当路由服务发起消息存储请求时,信号量减1。当路由服务接收到存储成功通知后,信号量加1。

  • 存储服务正常时,容量限制机制不会起作用,服务性能不会受到影响;
  • 存储服务异常时,本地缓存的容量会越来越小。最后再无可用的信号量时,服务会阻塞等待。此时不再对消息队列进行消费。既避免了服务OOM的状况,也降低了服务继续恶化的可能;

实施

基于信号量实现的限容数据结构BlockingHashMap

public class BlockingHashMap<K, V> {

    private static final int DEFAULT_MAX_AVAILABLE = 1000;
    private final ConcurrentHashMap<K, V> inmap = new ConcurrentHashMap<>(DEFAULT_MAX_AVAILABLE);
    private Semaphore sem;


    public BlockingHashMap() {
        this(DEFAULT_MAX_AVAILABLE);
    }

    public BlockingHashMap(int permits) {
        sem = new Semaphore(permits);
    }

    public V put(K key, V value) {
        boolean wasAdded = false;
        try {
            sem.acquire();
            V v = inmap.putIfAbsent(key, value);
            if (v != null) {
                return v;
            }
            wasAdded = true;
        } catch (Exception e) {
        } finally {
            if (!wasAdded) {
                // 若添加失败,需要释放信号量
                sem.release();
            }
        }
        return value;
    }

    public V remove(K key) {
        V value = inmap.remove(key);
        if (value != null) {
            // 只有当成功移除元素时才释放信号量
            sem.release();
        }
        return value;
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,598评论 18 139
  • 关于Mongodb的全面总结 MongoDB的内部构造《MongoDB The Definitive Guide》...
    中v中阅读 31,894评论 2 89
  • 1.ios高性能编程 (1).内层 最小的内层平均值和峰值(2).耗电量 高效的算法和数据结构(3).初始化时...
    欧辰_OSR阅读 29,300评论 8 265
  • 终于找到了一个能自言自语的地方。真好。完美地藏起来了呢。
    _listen_to_me_阅读 215评论 0 0
  • 当苦恼足够 再也说不出宣言 忍受和沉默在夜里 散发着扭曲的光彩 窗外的阳光 有种不真实的好 我坐着 站着 用忙碌填...
    张百酒阅读 173评论 0 3