一.何为事务
事务(Transaction)是由一系列对系统中数据进行访问与更新的操作所组成的一个程序执行逻辑单元(Unit),狭义上的事务特指数据库事务。一方面,当多个应用程序并发访问数据库时,事务可以在这些应用程序之间提供一个隔离方法,以防止彼此的操作互相干扰。另一方面,事务为数据库操作序列提供了一个从失败中恢复到正常状态的方法,同时提供了数据库即使在异常状态下仍能保持数据一致性的方法。
二.单机数据库事务的四个特性—ACID
原子性(A)
事务的原子性是指事务必须是一个原子的操作序列单元。事务中包含的各项操作在一次执行过程中,只允许出现以下两种状态之一。
- 全部执行成功。
- 全部不执行。
任何一项操作失败将导致整个事务失败,同时其他已经被执行的操作都将被撤销并回滚,只有所有的操作全部成功,整个事务才算是成功完成。
一致性(C)
事务的一致性是指事务的执行不能破坏数据库数据的完整性和一致性,一个事务在执行之前和执行之后,数据库必须处于一致性状态。也就是说,事务执行的结果必须是使数据库从一个一致性状态到另一个一致性状态,因此当数据库只包含成功事务提交的结果时,就能说数据库处于一致性状态。而如果数据库系统在运行过程中发生故障,有些事务尚未完成就被迫中断,这些未完成的事务对数据库所做的修改有一部分已写入物理数据库,这时数据库就处于一种不正确的状态,或者说是不一致的状态。
隔离性(I)
事务的隔离性是指在并发环境中,并发的事务是相互隔离的,一个事务的执行不能被其他事务干扰。也就是说,不同的事务并发操纵相同的数据时,每个事务都有各自完整的数据空间,即一个事务内部的操作及使用的数据对其他并发事务是隔离的,并发执行的各个事务之间不能互相干扰。
在标准 SQL 规范中,定义了 4 个事务隔离级别,不同的隔离级别对事务的处理不同,如未授权读取、授权读取、可重复读取和串行化。
- 未授权读取
未授权读取也被称为读未提交(Read Uncommitted),该隔离级别允许脏读取,其隔离级别最低。换句话说,如果一个事务正在处理某一数据,并对其进行了更新,但同时尚未完成事务,因此还没有进行事务提交;而与此同时,允许另一个事务也能够访问该数据。举个例子来说,事务A和事务B同时进行,事务A在整个执行阶段,会将某数据项的值从1开始,做一系列加法操作(比如说加1操作)直到变成10之后进行事务提交,此时,事务B能够看到这个数据项在事务A操作过程中的所有中间值(如1变成2、2变成3等),而对这一系列的中间值的读取就是未授权读取。 - 授权读取
授权读取也被称为读已提交(Read Committed),它和未授权读取非常相近,唯一的区别就是授权读取只允许获取已经被提交的数据。同样以上面的例子来说,事务A和事务B同时进行,事务A进行与上述同样的操作,此时,事务B无法看到这个数据项在事务 A 操作过程中的所有中间值,只能看到最终的 10。另外,如果说有一个事务C,和事务A进行非常类似的操作,只是事务C是将数据项从10加到20,此时事务B也同样可以读取到20,即授权读取允许不可重复读取。 - 可重复读取
可重复读取(Repeatable Read),简单地说,就是保证在事务处理过程中,多次读取同一个数据时,其值都和事务开始时刻是一致的。因此该事务级别禁止了不可重复读取和脏读取,但是有可能出现幻影数据。所谓幻影数据,就是指同样的事务操作,在前后两个时间段内执行对同一个数据项的读取,可能出现不一致的结果。在上面的例子,可重复读取隔离级别能够保证事务 B 在第一次事务操作过程中,始终对数据项读取到 1,但是在下一次事务操作中,即使事务 B(注意,事务名字虽然相同,但是指的是另一次事务操作)采用同样的查询方式,就可能会读取到10或20。 -
串行化
串行化(Serializable)是最严格的事务隔离级别。它要求所有事务都被串行执行,即事务只能一个接一个地进行处理,不能并发执行。
以上4个隔离级别的隔离性依次增强,分别解决不同的问题,表1-1对这4个隔离级别进行了一个简单的对比。
事务隔离级别越高,就越能保证数据的完整性和一致性,但同时对并发性能的影响也越大。通常,对于绝大多数的应用程序来说,可以优先考虑将数据库系统的隔离级别设置为授权读取,这能够在避免脏读取的同时保证较好的并发性能。尽管这种事务隔离级别会导致不可重复读、虚读和第二类丢失更新等并发问题,但较为科学的做法是在可能出现这类问题的个别场合中,由应用程序主动采用悲观锁或乐观锁来进行事务控制。
持久性(D)
事务的持久性也被称为永久性,是指一个事务一旦提交,它对数据库中对应数据的状态变更就应该是永久性的。换句话说,一旦某个事务成功结束,那么它对数据库所做的更新就必须被永久保存下来——即使发生系统崩溃或机器宕机等故障,只要数据库能够重新启动,那么一定能够将其恢复到事务成功结束时的状态。
三.何为分布式事务
分布式事务是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于分布式系统的不同节点之上。通常一个分布式事务中会涉及对多个数据源或业务系统的操作。
我们可以设想一个最典型的分布式事务场景:一个跨银行的转账操作涉及调用两个异地的银行服务,其中一个是本地银行提供的取款服务,另一个则是目标银行提供的存款服务,这两个服务本身是无状态并且是互相独立的,共同构成了一个完整的分布式事务。如果从本地银行取款成功,但是因为某种原因存款服务失败了,那么就必须回滚到取款前的状态,否则用户可能会发现自己的钱不翼而飞了。
从上面这个例子中,我们可以看到,一个分布式事务可以看作是由多个分布式的操作序列组成的,例如上面例子中的取款服务和存款服务,通常可以把这一系列分布式的操作序列称为子事务。因此,分布式事务也可以被定义为一种嵌套型的事务,同时也就具有了ACID事务特性。但由于在分布式事务中,各个子事务的执行是分布式的,因此要实现一种能够保证ACID特性的分布式事务处理系统就显得格外复杂。
四.CAP定理
一个分布式系统不可能同时满足一致性(C:Consistency)、可用性(A:Availability)和分区容错性(P:Partition tolerance)这三个基本需求,最多只能同时满足其中的两项。
一致性
在分布式环境中,一致性是指数据在多个副本之间是否能够保持一致的特性。在一致性的需求下,当一个系统在数据一致的状态下执行更新操作后,应该保证系统的数据仍然处于一致的状态。
对于一个将数据副本分布在不同分布式节点上的系统来说,如果对第一个节点的数据进行了更新操作并且更新成功后,却没有使得第二个节点上的数据得到相应的更新,于是在对第二个节点的数据进行读取操作时,获取的依然是老数据(或称为脏数据),这就是典型的分布式数据不一致情况。在分布式系统中,如果能能够做到针对一个数据项的更新操作执行成功后,所有的用户都可以读取到其最新的值,那么这样的系统就被认为具有强一致性(或严格的一致性)。
可用性
可用性是指系统提供的服务必须一直处于可用的状态,对于用户的每一个操作请求总是能够在有限的时间内返回结果。这里我们重点看下“有限的时间内”和“返回结果”。
“有限的时间内”是指,对于用户的一个操作请求,系统必须能够在指定的时间(即响应时间)内返回对应的处理结果,如果超过了这个时间范围,那么系统就被认为是不可用的。另外,“有限的时间内”是一个在系统设计之初就设定好的系统运行指标,通常不同的系统之间会有很大的不同。比如说,对于一个在线搜索引擎来说,通常在 0.5秒内需要给出用户搜索关键词对应的检索结果。以 Google为例,搜索“分布式”这一关键词,Google能够在 0.3秒左右的时间,返回大约上千万条检索结果。而对于一个面向 HIVE 的海量数据查询平台来说,正常的一次数据检索时间可能在20 秒到 30 秒之间,而如果是一个时间跨度较大的数据内容查询,“有限的时间”有时候甚至会长达几分钟。
从上面的例子中,我们可以看出,用户对于一个系统的请求响应时间的期望值不尽相同。但是,无论系统之间的差异有多大,唯一相同的一点就是对于用户请求,系统必须存在一个合理的响应时间,否则用户便会对系统感到失望。
“返回结果”是可用性的另一个非常重要的指标,它要求系统在完成对用户请求的处理后,返回一个正常的响应结果。正常的响应结果通常能够明确地反映出对请求的处理结果,即成功或失败,而不是一个让用户感到困惑的返回结果。
让我们再来看看上面提到的在线搜索引擎的例子,如果用户输入指定的搜索关键词后,返回的结果是一个系统错误,通常类似于“OutOfMemoryError”或“System Has Crashed”等提示语,那么我们认为此时系统是不可用的。
分区容错性
分区容错性约束了一个分布式系统需要具有如下特性:分布式系统在遇到任何网络分区故障的时候,仍然需要能够保证对外提供满足一致性和可用性的服务,除非是整个网络环境都发生了故障。
网络分区是指在分布式系统中,不同的节点分布在不同的子网络(机房或异地网络等)中,由于一些特殊的原因导致这些子网络之间出现网络不连通的状况,但各个子网络的内部网络是正常的,从而导致整个系统的网络环境被切分成了若干个孤立的区域。需要注意的是,组成一个分布式系统的每个节点的加入与退出都可以看作是一个特殊的网络分区。
既然在上文中我们提到,一个分布式系统无法同时满足上述三个需求,而只能满足其中的两项,因此在进行对CAP定理的应用时,我们就需要抛弃其中的一项
从 CAP 定理中我们可以看出,一个分布式系统不可能同时满足一致性、可用性和分区容错性这三个需求。另一方面,需要明确的一点是,对于一个分布式系统而言,分区容错性可以说是一个最基本的要求。为什么这样说,其实很简单,因为既然是一个分布式系统,那么分布式系统中的组件必然需要被部署到不同的节点,否则也就无所谓分布式系统了,因此必然出现子网络。而对于分布式系统而言,网络问题又是一个必定会出现的异常情况,因此分区容错性也就成为了一个分布式系统必然需要面对和解决的问题。因此系统架构设计师往往需要把精力花在如何根据业务特点在C(一致性)和A(可用性)之间寻求平衡。
五.BASE理论
BASE是Basically Available(基本可用)、Soft state(软状态)和Eventually consistent (最终一致性)三个短语的简写,是由来自eBay的架构师Dan Pritchett在其文章BASE:An Acid Alternative中第一次明确提出的。BASE是对CAP中一致性和可用性权衡的结果,其来源于对大规模互联网系统分布式实践的总结,是基于 CAP 定理逐步演化而来的,其核心思想是即使无法做到强一致性(Strong consistency),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)。接下来我们着重对BASE中的三要素进行详细讲解。
基本可用
基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性——但请注意,这绝不等价于系统不可用。以下两个就是“基本可用”的典型例子。
- 响应时间上的损失 :正常情况下,一个在线搜索引擎需要在 0.5 秒之内返回给用户相应的查询结果,但由于出现故障(比如系统部分机房发生断电或断网故障),查询结果的响应时间增加到了1~2秒。
- 功能上的损失:正常情况下,在一个电子商务网站上进行购物,消费者几乎能够顺利地完成每一笔订单,但是在一些节日大促购物高峰的时候,由于消费者的购物行为激增,为了保护购物系统的稳定性,部分消费者可能会被引导到一个降级页面。
弱状态
弱状态也称为软状态,和硬状态相对,是指允许系统中的数据存在中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时。
最终一致性
最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。
亚马逊首席技术官Werner Vogels在于2008年发表的一篇经典文章Eventually Consistent-Revisited中,对最终一致性进行了非常详细的介绍。他认为最终一致性是一种特殊的弱一致性:系统能够保证在没有其他新的更新操作的情况下,数据最终一定能够达到一致的状态,因此所有客户端对系统的数据访问都能够获取到最新的值。同时,在没有发生故障的前提下,数据达到一致状态的时间延迟,取决于网络延迟、系统负载和数据复制方案设计等因素。
在实际工程实践中,最终一致性存在以下五类主要变种。
- 因果一致性(Causal consistency)
因果一致性是指,如果进程 A 在更新完某个数据项后通知了进程 B,那么进程 B之后对该数据项的访问都应该能够获取到进程A更新后的最新值,并且如果进程B要对该数据项进行更新操作的话,务必基于进程 A 更新后的最新值,即不能发生丢失更新情况。与此同时,与进程 A 无因果关系的进程 C 的数据访问则没有这样的限制。 - 读一致性(Read your writes)
读己之所写是指,进程 A 更新一个数据项之后,它自己总是能够访问到更新过的最新值,而不会看到旧值。也就是说,对于单个数据获取者来说,其读取到的数据,一定不会比自己上次写入的值旧。因此,读己之所写也可以看作是一种特殊的因果一致性。 - 会话一致性(Session consistency)
会话一致性将对系统数据的访问过程框定在了一个会话当中:系统能保证在同一个有效的会话中实现“读己之所写”的一致性,也就是说,执行更能操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。 - 单调读一致性(Monotonic read consistency)
单调读一致性是指如果一个进程从系统中读取出一个数据项的某个值后,那么系统对于该进程后续的任何数据访问都不应该返回更旧的值。 - 单调写一致性(Monotonic write consistency)
单调写一致性是指,一个系统需要能够保证来自同一个进程的写操作被顺序地执行。
以上就是最终一致性的五类常见的变种,在实际系统实践中,可以将其中的若干个变种互相结合起来,以构建一个具有最终一致性特性的分布式系统。事实上,最终一致性并不是只有那些大型分布式系统才涉及的特性,许多现代的关系型数据库都采用了最终一致性模型。在现代关系型数据库中,大多都会采用同步和异步方式来实现主备数据复制技术。在同步方式中,数据的复制过程通常是更新事务的一部分,因此在事务完成后,主备数据库的数据就会达到一致。而在异步方式中,备库的更新往往会存在延时,这取决于事务日志在主备数据库之间传输的时间长短,如果传输时间过长或者甚至在日志传输过程中出现异常导致无法及时将事务应用到备库上,那么很显然,从备库中读取的数据将是旧的,因此就出现了数据不一致的情况。当然,无论是采用多次重试还是人为数据订正,关系型数据库还是能够保证最终数据达到一致——这就是系统提供最终一致性保证的经典案例。
总的来说,BASE 理论面向的是大型高可用可扩展的分布式系统,和传统事务的 ACID特性是相反的,它完全不同于ACID的强一致性模型,而是提出通过牺牲强一致性来获得可用性,并允许数据在一段时间内是不一致的,但最终达到一致状态。但同时,在实际的分布式场景中,不同业务单元和组件对数据一致性的要求是不同的,因此在具体的分布式系统架构设计过程中,ACID特性与BASE理论往往又会结合在一起使用。