如何用Zookeeper来实现分布式锁?

什么是Zookeeper临时顺序节点?

例如 :

/

动物 植物

猫 仓鼠 荷花 松树

Zookeeper的数据存储结构就像一棵树,这棵树由节点组成,这种节点叫做Zonde.

# Znode分为四种类型 :

1.持久节点(PERSISTENT)

默认的节点类型.创建节点的客户端与zookeeper断开连接后,该节点依旧存在.

2.持久节点顺序节点(PERSISTENT_SEQUENTIAL)

所谓顺序节点,就是在创建节点时,Zookeeper根据创建的时间顺序给该节点名称进行编号.

例如 :

仓鼠

仓鼠0001 仓鼠0002 仓鼠0003

3.临时节点(EPHEMERAL)

和持久节点相反,当创建节点的客户端与zookeeper断开连接后,临时节点会被删除 :

4.临时顺序节点(EPHEMERAL_SEQUENTIAL)

临时顺序节点结合了临时节点和顺序节点的特点 : 在创建节点时,Zookeeper根据创建的时间顺序给该节点名称进行编号 ; 当创建节点的客户端与zookeeper

断开连接后,临时节点会被删除.

# Zookeeper分布式锁的原理

Zookeeper分布式锁恰恰应用了临时顺序节点

## 获取锁 :

首先,在Zookeeper当中创建一个持久节点ParentLock.当第一个客户端想要获得锁时,需要在ParentLock这个节点下面创建一个临时顺序节点Lock1.

之后,Client1查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock1是不是顺序最靠前的一个.如果是第一个节点,则成功获得锁.

这时候,如果再有一个客户端Client2前来获取锁,则在ParentLock下再创建一个临时顺序节点Lock2.

Client2查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock2是不是顺序最靠前的一个,结果发现节点Lock2并不是最小的.

于是,Client2向排序仅比它靠前的节点Lock2注册Watcher,用于监听Lock1节点是否存在.这意味着Client2抢锁失败,进入了等待状态.

这时候,如果又有一个客户端Client3前来获取锁,则在ParentLock下再创建一个临时顺序节点Lock3.

Client3查找ParentLock下面所有的临时顺序节点并排序,判断自己所创建的节点Lock3是不是顺序最靠前的一个,结果同样发现节点Lock3并不是最小的.

于是,Client3向排序仅比它靠前的节点Lock2注册Watcher,用于监听Lock2节点是否存在.这意味着Client3同样抢锁失败,进入了等待状态.

这样一来,Client1得到了锁,Client2监听了Lock1,Client3监听了Lock2.这恰恰形成了一个等待队列,很像是Java当中的ReentrantLock所依赖的AQS(AbstractQueuedSynchronizer)

## 释放锁 :

释放锁分为两种情况 :

1.任务完成,客户端显示释放

当任务完成时,Client1会显示调用删除节点Lock1的指令.

2.任务执行过程中,客户端崩溃

获得锁的Client1在任务执行过程中,如果Duang的一声崩溃则会断开与Zookeeper服务端的链接.根据临时节点的特性,相关联的节点Lock1会随之自动删除.

由于Client2一直监听着Lock1的存在状态,当Lock1节点被删除,Client2会立刻收到通知.这时候Client2会再次查询ParentLock下面的所有节点,确认自己创建

的节点Lock2是不是目前最小的节点.如果是最小,则Client2顺利成章获得锁.

同理,如果Client2也因为任务完成或者节点崩溃而删除了节点Lock2,那么Client3就会接到通知.最终,Client3成功得到了锁.

Zookeeper和Redis分布式锁的比较

Zookeeper的

优点 :

1.有封装好的框架,容易实现.

2.有等待锁的队列,大大提升抢锁效率.

缺点 :

1.添加和删除节点性能较低.

Redis

优点 : Set和Del指令的性能较高.

缺点 :

1.实现复杂,需要考虑超时,原子性,误删等情形.

2.没有等待锁的队列,只能在客户端自旋等锁,效率低下.

两者都可以在客户端实现可重入逻辑.

在Apache的开源框架Apache Curator中,包含了对Zookeeper分布式锁的实现,源码 : https://github.com/apache/curator/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 196,200评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,526评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 143,321评论 0 325
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,601评论 1 267
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,446评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,345评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,753评论 3 387
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,405评论 0 255
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,712评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,743评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,529评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,369评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,770评论 3 300
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,026评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,301评论 1 251
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,732评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,927评论 2 336

推荐阅读更多精彩内容