分布式日志收集框架Flume
1.业务现状分析
WebServer/ApplicationServer分散在各个机器上
想在大数据平台Hadoop进行统计分析
日志如何收集到Hadoop平台上
解决方案及存在的问题
-
如何解决我们的数据从其他的server上移动到Hadoop之上?
- shell: cp --> Hadoop集群的机器上,hdfs dfs -put ....(有很多问题不好解决,容错、负载均衡、时效性、压缩)
- Flume,从 A --> B 移动日志
2.Flume概述
- Flume官网:http://flume.apache.org/
Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data.
Flume是由Apache基金会提供的一个分布式、高可靠、高可用的服务,用于分布式的海量日志的高效收集、聚合、移动系统。
-
Flume设计目标
- 可靠性:高科要
- 扩展性:模块可扩展
- 管理性:agent管理
-
界同类产品对比
- Flume: Cloudera/Apache, Java语言开发。
- Logstash: ELK(ElasticsSearch, Logstash, Kibana)
- Scribe: Facebook, 使用C/C++开发, 负载均衡不是很好, 已经不维护了。
- Chukwa: Yahoo/Apache, 使用Java语言开发, 负载均衡不是很好, 已经不维护了。
- Fluentd: 和Flume类似, Ruby开发。
-
Flume发展史
- Cloudera公司提出0.9.2,叫Flume-OG
- 2011年Flume-728编号,重要里程碑(Flume-NG),贡献给Apache社区
- 2012年7月 1.0版本
- 2015年5月 1.6版本
- ~ 1.7版本
3.Flume架构及核心组件
Flume有三大组件
- Source: 收集,指定数据源从哪里来(Avro, Thrift, Spooling, Kafka, Exec)
- Channel: 聚集,把数据先存在(Memory, File, Kafka等用的比较多)
- Sink: 把数据写到某个地方去(HDFS, Hive, Logger, Avro, Thrift, File, ES, HBase, Kafka等)
4.Flume环境部署
- 前置条件
- Java Runtime Environment - Java 1.8 or later(安装Java)
- Memory - Sufficient memory for configurations used by sources, channels or sinks(足够内存)
- Disk Space - Sufficient disk space for configurations used by channels or sinks(足够空间)
- Directory Permissions - Read/Write permissions for directories used by agent(读写权限)
- 1.安装JDK(下载,解压,安装,配置环境变量)
- 2.安装Flume(下载,加压,安装,配置环境变量,检测:flume-ng version)
5.Flume实战
-
需求1:从指定网络端口采集数据输出到控制台
- flume-conf.properties
- A) 配置Source
- B) 配置Channel
- C) 配置Sink
- D) 把以上三个组件串起来
# example.conf: A single-node Flume configuration # a1: agent名称 # r1:source的名称 # k1:sink的名称 # c1:channel的名称 # Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = netcat a1.sources.r1.bind = localhost a1.sources.r1.port = 44444 # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
- 启动Agent
flume-ng agent \ --name $agent_name \ --conf conf \ --conf-file conf/flume-conf.properties \ -Dflume.root.logger=INFO,console flume-ng agent \ --name a1 \ --conf $FLUME_HOME/conf \ --conf-file $FLUME_HOME/conf/example.conf \ -Dflume.root.logger=INFO,console
- flume-conf.properties
-
需求2:监控一个文件实时采集新增的数据输出到控制台
- 1.Agent选型:exec source + memory channel + logger sink
- 2.配置文件
# exec-memory-logger.conf: A single-node Flume configuration # a1: agent名称 # r1:source的名称 # k1:sink的名称 # c1:channel的名称 # Name the components on this agent a1.sources = r1 a1.sinks = k1 a1.channels = c1 # Describe/configure the source a1.sources.r1.type = exec a1.sources.r1.command = tail -F /home/k.o/data/data.log a1.sources.r1.shell = /bin/sh -c # Describe the sink a1.sinks.k1.type = logger # Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Bind the source and sink to the channel a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
- 启动Agent
flume-ng agent \ --name $agent_name \ --conf conf \ --conf-file conf/flume-conf.properties \ -Dflume.root.logger=INFO,console flume-ng agent \ --name a1 \ --conf $FLUME_HOME/conf \ --conf-file $FLUME_HOME/conf/exec-memory-logger.conf \ -Dflume.root.logger=INFO,console
需求3:将A服务器上的日志实时采集到B服务器
- 技术选型:
1.exec source + memory channel + avro sink
2.arro source + memory channel + logger sink
# exec-memory-avro.conf: A single-node Flume configuration
# exec-memory-avro: agent名称
# exec-source:source的名称
# avro-sink:sink的名称
# memory-channel:channel的名称
# Name the components on this agent
exec-memory-avro.sources = exec-source
exec-memory-avro.sinks = avro-sink
exec-memory-avro.channels = memory-channel
# Describe/configure the source
exec-memory-avro.sources.exec-source.type = exec
exec-memory-avro.sources.exec-source.command = tail -F /home/k.o/data/data.log
exec-memory-avro.sources.exec-source.shell = /bin/sh -c
# Describe the sink
exec-memory-avro.sinks.avro-sink.type = avro
exec-memory-avro.sinks.avro-sink.hostname = localhost
exec-memory-avro.sinks.avro-sink.port = 44444
# Use a channel which buffers events in memory
exec-memory-avro.channels.memory-channel.type = memory
exec-memory-avro.channels.memory-channel.capacity = 1000
exec-memory-avro.channels.memory-channel.transactionCapacity = 100
# Bind the source and sink to the channel
exec-memory-avro.sources.exec-source.channels = memory-channel
exec-memory-avro.sinks.avro-sink.channel = memory-channel
# avro-memory-logger.conf: A single-node Flume configuration
# avro-memory-logger: agent名称
# exec-source:source的名称
# logger-sink:sink的名称
# memory-channel:channel的名称
# Name the components on this agent
avro-memory-logger.sources = avro-source
avro-memory-logger.sinks = logger-sink
avro-memory-logger.channels = memory-channel
# Describe/configure the source
avro-memory-logger.sources.avro-source.type = avro
avro-memory-logger.sources.avro-source.bind = localhost
avro-memory-logger.sources.avro-source.port = 44444
# Describe the sink
avro-memory-logger.sinks.logger-sink.type = logger
# Use a channel which buffers events in memory
avro-memory-logger.channels.memory-channel.type = memory
avro-memory-logger.channels.memory-channel.capacity = 1000
avro-memory-logger.channels.memory-channel.transactionCapacity = 100
# Bind the source and sink to the channel
avro-memory-logger.sources.avro-source.channels = memory-channel
avro-memory-logger.sinks.logger-sink.channel = memory-channel
- 启动Agent
# 先启动 avro-memory-logger
flume-ng agent \
--name avro-memory-logger \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/avro-memory-logger.conf \
-Dflume.root.logger=INFO,console
# 再启动 exec-memory-avro
flume-ng agent \
--name exec-memory-avro \
--conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/exec-memory-avro.conf \
-Dflume.root.logger=INFO,console
- 日志收集过程
- 机器A上监控一个文件,当我们访问主站时会有用户行为日志记录到access.log钟
- avro sink把新产生的日志输出到对应的avro source指定的hostname和port上
- 通过avro source对应的logger将我们收集的日志输出到控制台