python和Keras.backend常见函数

python 常见函数(v3.0)

lambda 匿名函数

# lambda <params>:<result>
func = lambda x, y: x + y
print(func(1, 2))
# 输出 3

map 函数

将 一个或多个 sequnce 中元素作为参数传递到 func 中执行,并以迭代器的方式将函数执行结果返回。

# map(func, sequnce[, sequnce,....]) -> iterator
>> list(map(lambda x: x+2, [1,2,3]))
[3, 4, 5]
>> list(map(pow, [1,2,3], [2,3,4]))
[1, 8, 81]

filter 函数

过滤器, 若function为None,则会返回包含非空元素的迭代器。

# filter(func or None, sequence) -> iterator
>> list(filter((lambda x: x>0),range(-5,5)))
[1,2,3,4]
>> list(filter(None,range(-5,5)))
[-5, -4, -3, -2, -1, 1, 2, 3, 4]

map 函数

对sequnce中元素依次执行 func, 并返回一个map对象

# map(func, sequence)
>> map(lambda x: x*x*x, range(1, 11)
<map object at 0x7fafdf0d6978>
>> list(map(lambda x: x*x*x, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

当 func 参数为多个参数时, sequence 数量与之对应

reduce 函数

迭代 sequence 中内容逐一调用相应函数, 返回一个结果

# reduce(func, sequence, starting_value)
# starting_value 为初始调用值, 可为空或省略
>> reduce(lambda x, y: x + y, range(1, 11))
55

在 python 3 之后如果想用 reduce 可以采用 functools, 因为其已经被移除 python 3 内置的功能, 方法如下:

import functools
functools.reduce(lambda x, y: x + y, range(1, 11))

zip 函数

接收 sequence 对象作为参数, 将对象中对应的元素打包成为一个个 tuple, 然后返回由这些 tuples 组成的 list. 若传入参数的长度不等, 则返回 list 的长度和参数中长度最短的对象相同. 使用 * 操作符与 zip 函数配合可以实现与 zip 相反的功能,即将合并的序列拆成多个 tuple.

# zip([sequence, ...])
>> x = [1, 2, 3]; y = ['a', 'b', 'c']
>> list(zip(x, y))
[(1,'a'),(2,'b'),(3,'c')]
>> list(zip(*zip(x, y)))
[(1,2,3),('a','b','c')]
# 长度不一样
>> x = [1, 2, 3]; y = ['a', 'b', 'c', 'd']
>> list(zip(x, y))
[(1,'a'),(2,'b'),(3,'c')]
>> list(zip(*zip(x, y)))
[(1,2,3),('a','b','c')]

keras 样本打散

# data_x 是 numpy.array 对象
indices = numpy.random.permutation(data_x.shape[0]) # shape[0]表示第0轴的长度,通常是训练数据的数量
rand_data_x = data_x[indices]
rand_data_y = data_y[indices] # data_y就是标记(label)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容

  • 1.基本使用 1.1 数据类型 常用数据类型 Common Data Types 其他类型 Others 1.2 ...
    suwi阅读 1,326评论 0 3
  • PYTHON-进阶-ITERTOOLS模块小结转自wklken:http://wklken.me/posts/20...
    C_Y_阅读 953评论 0 2
  • 异乡人又称作局外人。是法国作家加缪的诺贝尔文学奖作品。 主人公默尔索由于杀人而被判死刑。审判经历了两个过程一...
    认知牛阅读 5,893评论 1 5
  • 如题 今日在银行办事 我拿的是79号 到了银行 发现76号正在办理业务 心中暗喜 然而真是然而 在这中间只差2个人...
    莫一凡阅读 169评论 0 0
  • 最近生活的变化速度之快简直超乎了我的想想象,大概3个月以前我还是个无忧无虑的老光棍,每个月拿着还行的工资过着无所事...
    去哪看天阅读 202评论 0 0