2019-03-22

今日总结:

今天是上班的第一天,是在传易互联(深圳)有限公司上班的第一天,这份工作我很喜欢,希望以后的每一天都可以学到更多的东西,这些不是让其他人告诉你要去做什么,而是自己要知道,自己应该做什么,起码今天多了一点感觉,知道自己要做什么,没有像之前那样一点头绪都没有,唯一遗憾的是,刚来的第一天,就有同事辞职了,是人事部的,只跟他见过一次,但是还是蛮舍不得的,不过他会有更好的机会等着他,祝愿他,我要回宿舍了  拜拜了。


       只要在统计方面发现用户的粘性增加,广告的单击率和转化率提升,这就算一个上线产品的基本成功点了,已经具备可以深入优化的基础。

什么是用户画像

       用户画像又称用户角色,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。

       我们在实际操作的过程中往往会以最为浅显和贴近生活的话语将用户的属性、行为与期待联结起来。作为实际用户的虚拟代表,用户画像所形成的用户角色并不是脱离产品和市场之外所构建出来的,形成的用户角色需要有代表性能代表产品的主要受众和目标群体。

 用户画像的八要素

       做产品怎么做用户画像,用户画像是真实用户的虚拟代表,首先它是基于真实的,它不是一个具体的人,另外一个是根据目标的行为观点的差异区分为不同类型,迅速组织在一起,然后把新得出的类型提炼出来,形成一个类型的用户画像。一个产品大概需要4-8种类型的用户画像。

P代表基本性(Primary):指该用户角色是否基于对真实用户的情景访谈;

E代表同理性(Empathy):指用户角色中包含姓名、照片和产品相关的描述,该用户角色是否引同理心;

R代表真实性(Realistic):指对那些每天与顾客打交道的人来说,用户角色是否看起来像真实人物;

S代表独特性(Singular):每个用户是否是独特的,彼此很少有相似性;

O代表目标性(Objectives):该用户角色是否包含与产品相关的高层次目标,是否包含关键词来描述该目标;

N代表数量性(Number):用户角色的数量是否足够少,以便设计团队能记住每个用户角色的姓名,以及其中的一个主要用户角色;

A代表应用性(Applicable):设计团队是否能使用用户角色作为一种实用工具进行设计决策。

L代表长久性(Long):用户标签的长久性。

stata

       Stata的统计功能很强,除了传统的统计分析方法外,还收集了近20年发展起来的新方法,如Cox比例风险回归,指数与Weibull回归,多类结果与有序结果的logistic回归,Poisson回归,负二项回归及广义负二项回归,随机效应模型等。具体说, Stata具有如下统计分析能力:

       数值变量资料的一般分析:参数估计,t检验,单因素和多因素的方差分析,协方差分析,交互效应模型,平衡和非平衡设计,嵌套设计,随机效应,多个均数的两两比较,缺项数据的处理,方差齐性检验,正态性检验,变量变换等。

       分类资料的一般分析:参数估计,列联表分析 ( 列联系数,确切概率 ) ,流行病学表格分析等。

      等级资料的一般分析:秩变换,秩和检验,秩相关等

     相关与回归分析:简单相关,偏相关,典型相关,以及多达数十种的回归分析方法,如多元线性回归,逐步回归,加权回归,稳键回归,二阶段回归,百分位数 ( 中位数 ) 回归,残差分析、强影响点分析,曲线拟合,随机效应的线性回归模型等。

     其他方法:质量控制,整群抽样的设计效率,诊断试验评价, kappa等。

作图功能

         Stata的作图模块,主要提供如下八种基本图形的制作 : 直方图(histogram),条形图(bar),百分条图 (oneway),百分圆图(pie),散点图(two way),散点图矩阵(matrix),星形图(star),分位数图。这些图形的巧妙应用,可以满足绝大多数用户的统计作图要求。在有些非绘图命令中,也提供了专门绘制某种图形的功能,如在生存分析中,提供了绘制生存曲线图,回归分析中提供了残差图等。

Stata的矩阵运算功能

       矩阵代数是多元统计分析的重要工具, Stata提供了多元统计分析中所需的矩阵基本运算,如矩阵的加、积、逆、 Cholesky分解、 Kronecker内积等;还提供了一些高级运算,如特征根、特征向量、奇异值分解等;在执行完某些统计分析命令后,还提供了一些系统矩阵,如估计系数向量、估计系数的协方差矩阵等。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容

  • 今天是什么日子 起床:6:30 就寝:00:30 天气:阴 心情:愉快 叫我起床的不是闹钟是梦想 年度目标及关键点...
    伍诗韵Ruby阅读 212评论 2 2
  • 近日,又有一家中国互联网公司在美国上市了。按照业内人士的说法,2018是中国互联网公司的“大年”,一堆创业公司相继...
    光荣与梦想1987阅读 690评论 0 1
  • 看空股市就撤资,看空人生还不能撤人,只能撤心。年轻的时候定然是看好人生的,毕竟那时站在起点,前方朦胧而美好,总以为...
    舒然_ad6f阅读 334评论 0 0
  • 珊珊: 我的好女儿,你不怕辛苦,不厌其烦,忍劳忍怨在家替爸、妈行孝,定期为奶奶洗头、修剪头发,给奶奶洗...
    韦理胜WLS阅读 1,208评论 0 1