第一、四个用途
用途一:
定义一种类型的别名,而不只是简单的宏替换。可以用作同时声明指针型的多个对象。比如:
char* pa, pb; // 这多数不符合我们的意图,它只声明了一个指向字符变量的指针,
// 和一个字符变量;
以下则可行:
typedef char* PCHAR; // 一般用大写
PCHAR pa, pb; // 可行,同时声明了两个指向字符变量的指针
虽然:
char *pa, *pb;
也可行,但相对来说没有用typedef的形式直观,尤其在需要大量指针的地方,typedef的方式更省事。
用途二:
用在旧的C的代码中(具体多旧没有查),帮助struct。以前的代码中,声明struct新对象时,必须要带上struct,即形式为: struct 结构名 对象名,如:
struct tagPOINT1
{
int x;
int y;
};
struct tagPOINT1 p1;
而在C++中,则可以直接写:结构名 对象名,即:
tagPOINT1 p1;
估计某人觉得经常多写一个struct太麻烦了,于是就发明了:
typedef struct tagPOINT
{
int x;
int y;
}POINT;
POINT p1; // 这样就比原来的方式少写了一个struct,比较省事,尤其在大量使用的时候
或许,在C++中,typedef的这种用途二不是很大,但是理解了它,对掌握以前的旧代码还是有帮助的,毕竟我们在项目中有可能会遇到较早些年代遗留下来的代码。
用途三:
用typedef来定义与平台无关的类型。
比如定义一个叫 REAL 的浮点类型,在目标平台一上,让它表示最高精度的类型为:
typedef long double REAL;
在不支持 long double 的平台二上,改为:
typedef double REAL;
在连 double 都不支持的平台三上,改为:
typedef float REAL;
也就是说,当跨平台时,只要改下 typedef 本身就行,不用对其他源码做任何修改。
标准库就广泛使用了这个技巧,比如size_t。
另外,因为typedef是定义了一种类型的新别名,不是简单的字符串替换,所以它比宏来得稳健(虽然用宏有时也可以完成以上的用途)。
用途四:
为复杂的声明定义一个新的简单的别名。方法是:在原来的声明里逐步用别名替换一部分复杂声明,如此循环,把带变量名的部分留到最后替换,得到的就是原声明的最简化版。举例:
1. 原声明:int (a[5])(int, char*);
变量名为a,直接用一个新别名pFun替换a就可以了:
typedef int (pFun)(int, char*);
原声明的最简化版:
pFun a[5];
2. 原声明:void (b[10]) (void ()());
变量名为b,先替换右边部分括号里的,pFunParam为别名一:
typedef void (pFunParam)();
再替换左边的变量b,pFunx为别名二:
typedef void (pFunx)(pFunParam);
原声明的最简化版:
pFunx b[10];
3. 原声明:doube()() (e)[9];
变量名为e,先替换左边部分,pFuny为别名一:
typedef double(pFuny)();
再替换右边的变量e,pFunParamy为别名二
typedef pFuny (pFunParamy)[9];
原声明的最简化版:
pFunParamy e;
理解复杂声明可用的“右左法则”:
从变量名看起,先往右,再往左,碰到一个圆括号就调转阅读的方向;括号内分析完就跳出括号,还是按先右后左的顺序,如此循环,直到整个声明分析完。举例:
int (func)(int p);
首 先找到变量名func,外面有一对圆括号,而且左边是一个号,这说明func是一个指针;然后跳出这个圆括号,先看右边,又遇到圆括号,这说明 (func)是一个函数,所以func是一个指向这类函数的指针,即函数指针,这类函数具有int类型的形参,返回值类型是int。
int (func[5])(int );
func 右边是一个[]运算符,说明func是具有5个元素的数组;func的左边有一个,说明func的元素是指针(注意这里的不是修饰func,而是修饰 func[5]的,原因是[]运算符优先级比高,func先跟[]结合)。跳出这个括号,看右边,又遇到圆括号,说明func数组的元素是函数类型的指 针,它指向的函数具有int*类型的形参,返回值类型为int。
也可以记住2个模式:
type ()(....)函数指针
type ()[]数组指针
第二、两大陷阱
陷阱一:
记住,typedef是定义了一种类型的新别名,不同于宏,它不是简单的字符串替换。比如:
先定义:
typedef char* PSTR;
然后:
int mystrcmp(const PSTR, const PSTR);
const PSTR实际上相当于const char吗?不是的,它实际上相当于char const。
原因在于const给予了整个指针本身以常量性,也就是形成了常量指针char* const。
简单来说,记住当const和typedef一起出现时,typedef不会是简单的字符串替换就行。
陷阱二:
typedef在语法上是一个存储类的关键字(如auto、extern、mutable、static、register等一样),虽然它并不真正影响对象的存储特性,如:
typedef static int INT2; //不可行
编译将失败,会提示“指定了一个以上的存储类”。
以上资料出自: http://blog.sina.com.cn/s/blog_4826f7970100074k.html 作者:赤龙
第三、typedef 与 #define的区别
案例一:
通常讲,typedef要比#define要好,特别是在有指针的场合。请看例子:
typedef char *pStr1;
#define pStr2 char *;
pStr1 s1, s2;
pStr2 s3, s4;
在上述的变量定义中,s1、s2、s3都被定义为char *,而s4则定义成了char,不是我们所预期的指针变量,根本原因就在于#define只是简单的字符串替换而typedef则是为一个类型起新名字。
案例二:
下面的代码中编译器会报一个错误,你知道是哪个语句错了吗?
typedef char * pStr;
char string[4] = "abc";
const char *p1 = string;
const pStr p2 = string;
p1++;
p2++;
是p2++出错了。这个问题再一次提醒我们:typedef和#define不同,它不是简单的文本替换。上述代码中const pStr p2并不等于const char * p2。const pStr p2和const long x本质上没有区别,都是对变量进行只读限制,只不过此处变量p2的数据类型是我们自己定义的而不是系统固有类型而已。因此,const pStr p2的含义是:限定数据类型为char *的变量p2为只读,因此p2++错误。
第四部分资料:使用 typedef 抑制劣质代码
作者:Danny Kalev
编译:MTT 工作室
原文出处:Using typedef to Curb Miscreant Code
摘要: Typedef 声明有助于创建平台无关类型,甚至能隐藏复杂和难以理解的语法。不管怎样,使用 typedef 能为代码带来意想不到的好处,通过本文你可以学习用 typedef 避免缺欠,从而使代码更健壮。
typedef 声明,简称 typedef,为现有类型创建一个新的名字。比如人们常常使用 typedef 来编写更美观和可读的代码。所谓美观,意指 typedef 能隐藏笨拙的语法构造以及平台相关的数据类型,从而增强可移植性和以及未来的可维护性。本文下面将竭尽全力来揭示 typedef 强大功能以及如何避免一些常见的陷阱。
Q:如何创建平台无关的数据类型,隐藏笨拙且难以理解的语法?
A: 使用 typedefs 为现有类型创建同义字。
定义易于记忆的类型名
typedef 使用最多的地方是创建易于记忆的类型名,用它来归档程序员的意图。类型出现在所声明的变量名字中,位于 ''typedef'' 关键字右边。例如:
typedef int size;
此声明定义了一个 int 的同义字,名字为 size。注意 typedef 并不创建新的类型。它仅仅为现有类型添加一个同义字。你可以在任何需要 int 的上下文中使用 size:
void measure(size * psz); size array[4];size len = file.getlength();std::vector <size> vs;
typedef 还可以掩饰符合类型,如指针和数组。例如,你不用象下面这样重复定义有 81 个字符元素的数组:
char line[81];char text[81];
定义一个 typedef,每当要用到相同类型和大小的数组时,可以这样:
typedef char Line[81]; Line text, secondline;getline(text);
同样,可以象下面这样隐藏指针语法:
typedef char * pstr;int mystrcmp(pstr, pstr);
这里将带我们到达第一个 typedef 陷阱。标准函数 strcmp()有两个‘const char *’类型的参数。因此,它可能会误导人们象下面这样声明 mystrcmp():
int mystrcmp(const pstr, const pstr);
这是错误的,按照顺序,‘const pstr’被解释为‘char * const’(一个指向 char 的常量指针),而不是‘const char *’(指向常量 char 的指针)。这个问题很容易解决:
typedef const char * cpstr; int mystrcmp(cpstr, cpstr); // 现在是正确的
记住: 不管什么时候,只要为指针声明 typedef,那么都要在最终的 typedef 名称中加一个 const,以使得该指针本身是常量,而不是对象。
代码简化
上面讨论的 typedef 行为有点像 #define 宏,用其实际类型替代同义字。不同点是 typedef 在编译时被解释,因此让编译器来应付超越预处理器能力的文本替换。例如:
typedef int (*PF) (const char *, const char *);
这个声明引入了 PF 类型作为函数指针的同义字,该函数有两个 const char * 类型的参数以及一个 int 类型的返回值。如果要使用下列形式的函数声明,那么上述这个 typedef 是不可或缺的:
PF Register(PF pf);
Register() 的参数是一个 PF 类型的回调函数,返回某个函数的地址,其署名与先前注册的名字相同。做一次深呼吸。下面我展示一下如果不用 typedef,我们是如何实现这个声明的:
int (*Register (int (*pf)(const char *, const char *))) (const char *, const char *);
很少有程序员理解它是什么意思,更不用说这种费解的代码所带来的出错风险了。显然,这里使用 typedef 不是一种特权,而是一种必需。持怀疑态度的人可能会问:“OK,有人还会写这样的代码吗?”,快速浏览一下揭示 signal()函数的头文件 <csinal>,一个有同样接口的函数。
typedef 和存储类关键字(storage class specifier)
这种说法是不 是有点令人惊讶,typedef 就像 auto,extern,mutable,static,和 register 一样,是一个存储类关键字。这并是说 typedef 会真正影响对象的存储特性;它只是说在语句构成上,typedef 声明看起来象 static,extern 等类型的变量声明。下面将带到第二个陷阱:
typedef register int FAST_COUNTER; // 错误
编译通不过。问题出在你不能在声明中有多个存储类关键字。因为符号 typedef 已经占据了存储类关键字的位置,在 typedef 声明中不能用 register(或任何其它存储类关键字)。
促进跨平台开发
typedef 有另外一个重要的用途,那就是定义机器无关的类型,例如,你可以定义一个叫 REAL 的浮点类型,在目标机器上它可以i获得最高的精度:
typedef long double REAL;
在不支持 long double 的机器上,该 typedef 看起来会是下面这样:
typedef double REAL;
并且,在连 double 都不支持的机器上,该 typedef 看起来会是这样: 、
typedef float REAL;
你不用对源代码做任何修改,便可以在每一种平台上编译这个使用 REAL 类型的应用程序。唯一要改的是 typedef 本身。在大多数情况下,甚至这个微小的变动完全都可以通过奇妙的条件编译来自动实现。不是吗? 标准库广泛地使用 typedef 来创建这样的平台无关类型:size_t,ptrdiff 和 fpos_t 就是其中的例子。此外,象 std::string 和 std::ofstream 这样的 typedef 还隐藏了长长的,难以理解的模板特化语法,例如:basic_string<char, char_traits<char>,allocator<char>> 和 basic_ofstream<char, char_traits<char>>。
以上转自:http://www.kuqin.com/language/20090322/41866.html
typedef & 结构的问题
(**1)、typedef的最简单使用
typedef long byte_4;
给已知数据类型long起个新名字,叫byte_4。
(2)、 typedef与结构结合使用
typedef struct tagMyStruct
{
int iNum;
long lLength;
} MyStruct;
这语句实际上完成两个操作:
1) 定义一个新的结构类型
struct tagMyStruct
{
int iNum;
long lLength;
};**
分析:tagMyStruct称为“tag”,即“标签”,实际上是一个临时名字,struct 关键字和tagMyStruct一起,构成了这个结构类型,不论是否有typedef,这个结构都存在。
我们可以用struct tagMyStruct varName来定义变量,但要注意,使用tagMyStruct varName来定义变量是不对的,因为struct 和tagMyStruct合在一起才能表示一个结构类型。
**2) typedef为这个新的结构起了一个名字,叫MyStruct。
typedef struct tagMyStruct MyStruct;
//因此,MyStruct实际上相当于struct tagMyStruct,我们可以使用MyStruct varName来定义变量。
3)、规范做法:**
struct tagNode
{
char *pItem;
struct tagNode *pNext;
};
typedef struct tagNode *pNode;
3. typedef & #define的问题
有下面两种定义pStr数据类型的方法,两者有什么不同?哪一种更好一点?
typedef char* pStr;
#define pStr char*;**
答案与分析:
**通常讲,typedef要比#define要好,特别是在有指针的场合。请看例子:
typedef char* pStr1;
#define pStr2 char *
pStr1 s1, s2;
pStr2 s3, s4;
在上述的变量定义中,s1、s2、s3都被定义为char ,而s4则定义成了char,不是我们所预期的指针变量,根本原因就在于#define只是简单的字符串替换而typedef则是为一个类型起新名字。* 上例中define语句必须写成 pStr2 s3, *s4; 这这样才能正常执行。
#define用法例子:
#define f(x) x*x
main( )
{
int a=6,b=2,c;
c=f(a) / f(b);
printf("%d //n ",c);
}
以下程序的输出结果是: 36。
因为如此原因,在许多C语言编程规范中提到使用#define定义时,如果定义中包含表达式,必须使用括号,则上述定义应该如下定义才对:
#define f(x) (x*x)
当然,如果你使用typedef就没有这样的问题。
4. typedef & #define的另一例
下面的代码中编译器会报一个错误,你知道是哪个语句错了吗?
typedef char * pStr;
char string[4] = "abc";
const char *p1 = string;
const pStr p2 = string;
p1++;
p2++;
答案与分析:
是p2++出错了。这个问题再一次提醒我们:typedef和#define不同,它不是简单的文本替换。上述代码中const pStr p2并不等于const char * p2。const pStr p2和const long x本质上没有区别,都是对变量进行只读限制,只不过此处变量p2的数据类型是我们自己定义的而不是系统固有类型而已。因此,const pStr p2的含义是:限定数据类型为char *的变量p2为只读,因此p2++错误。
#define与typedef引申谈
#######1) #define宏定义有一个特别的长处:可以使用 #ifdef ,#ifndef等来进行逻辑判断,还可以使用#undef来取消定义。
#######2) typedef也有一个特别的长处:它符合范围规则,使用typedef定义的变量类型其作用范围限制在所定义的函数或者文件内(取决于此变量定义的位置),而宏定义则没有这种特性。
5. typedef & 复杂的变量声明
在编程实践中,尤其是看别人代码的时候,常常会遇到比较复杂的变量声明,使用typedef作简化自有其价值,比如:
下面是三个变量的声明,我想使用typdef分别给它们定义一个别名,请问该如何做?
>1:int *(*a[5])(int, char*);
>2:void (*b[10]) (void (*)());
>3\. double(*)() (*pa)[9];
答案与分析:
对复杂变量建立一个类型别名的方法很简单,你只要在传统的变量声明表达式里用类型名替代变量名,然后把关键字typedef加在该语句的开头就行了。
>1:int *(*a[5])(int, char*);
//pFun是我们建的一个类型别名
typedef int *(*pFun)(int, char*);
//使用定义的新类型来声明对象,等价于int* (*a[5])(int, char*);
pFun a[5];
>2:void (*b[10]) (void (*)() ); // 此蓝色部分为个人理解,未找到原文出处
//首先为上面表达式蓝色部分声明一个新类型
typedef void (*pFunParam)();
//整体声明一个新类型
typedef void (*pFun)(pFunParam);
//使用定义的新类型来声明对象,等价于void (*b[10]) (void (*)());
pFun b[10];
>3\. double(* (*pa)[9] )(); // 此蓝色部分为个人理解,未找到原文出处
//首先为上面表达式蓝色部分声明一个新类型
typedef double(*pFun)();
//整体声明一个新类型
typedef pFun (*pFunParam)[9];
//使用定义的新类型来声明对象,等价于double(*(*pa)[9])();
pFunParam pa;